Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,12 +9,12 @@ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Proce
|
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
-
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("
|
18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
@@ -22,7 +22,7 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
|
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
@@ -41,8 +41,8 @@ def speech_to_speech_translation(audio):
|
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper
|
45 |
-
[SpeechT5 TTS](https://huggingface.co/microsoft/
|
46 |
|
47 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
48 |
"""
|
|
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
|
17 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("Sandiago21/speecht5_finetuned_facebook_voxpopuli_french").to(device)
|
18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
|
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "fr"})
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
|
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Small](https://huggingface.co/openai/whisper-small) model for speech translation, and Microsoft's
|
45 |
+
[SpeechT5 TTS](https://huggingface.co/microsoft/Sandiago21/speecht5_finetuned_facebook_voxpopuli_french) model for text-to-speech:
|
46 |
|
47 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
48 |
"""
|