Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,957 Bytes
1de8821 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# GMFlow
Official PyTorch implementation of paper:
[**GMFlow: Learning Optical Flow via Global Matching**](https://arxiv.org/abs/2111.13680), **CVPR 2022, Oral**
Authors: [Haofei Xu](https://haofeixu.github.io/), [Jing Zhang](https://scholar.google.com.hk/citations?user=9jH5v74AAAAJ), [Jianfei Cai](https://jianfei-cai.github.io/), [Hamid Rezatofighi](https://scholar.google.com/citations?user=VxAuxMwAAAAJ), [Dacheng Tao](https://scholar.google.com/citations?user=RwlJNLcAAAAJ)
**11/15/2022 Update: Check out our new work: [Unifying Flow, Stereo and Depth Estimation](https://haofeixu.github.io/unimatch/) and code: [unimatch](https://github.com/autonomousvision/unimatch) for extending GMFlow to stereo and depth tasks. [More pretrained GMFlow models](https://github.com/autonomousvision/unimatch/blob/master/MODEL_ZOO.md) with different speed-accuracy trade-offs are also released. Check out our [Colab](https://colab.research.google.com/drive/1r5m-xVy3Kw60U-m5VB-aQ98oqqg_6cab?usp=sharing) and [HuggingFace](https://huggingface.co/spaces/haofeixu/unimatch) demo to play with GMFlow in your browser!**
**A [video introduction](https://www.bilibili.com/video/BV18A4y1R7PL) (in Chinese) of GMFlow is available at bilibili!**
https://user-images.githubusercontent.com/19343475/174446408-520b8a6c-9714-4ff3-978c-98e23ab29c1f.mp4
We streamline the optical flow estimation pipeline by reformulating optical flow as a **global matching** problem.
<p align="center"><img width=90% src="assets/gmflow.png"></p>
## Highlights
- **Flexible & Modular design**
We decompose the end-to-end optical flow framework into five components:
feature extraction, feature enhancement, feature matching, flow propagation and flow refinement.
One can easily construct a customized optical flow model by combining different components.
- **High accuracy**
With only one refinement, GMFlow outperforms 31-refinements RAFT on the challenging Sintel benchmark.
- **High efficiency**
A basic GMFlow model (without refinement) runs at 57ms (V100) or 26ms (A100) for Sintel data (436x1024).
GMFlow gains more speedup than RAFT on high-end GPUs (e.g., A100) since GMFlow doesn't require a large number of sequential computation.
GMFlow also simplifies backward flow computation without requiring to forward the network twice. The bidirectional flow can be used for occlusion detection with forward-backward consistency check.
<p align="center"><img width=90% src="assets/bidir_flow_occ.png"></p>
## Installation
Our code is based on pytorch 1.9.0, CUDA 10.2 and python 3.8. Higher version pytorch should also work well.
We recommend using [conda](https://www.anaconda.com/distribution/) for installation:
```
conda env create -f environment.yml
conda activate gmflow
```
## Demos
All pretrained models can be downloaded from [google drive](https://drive.google.com/file/d/1d5C5cgHIxWGsFR1vYs5XrQbbUiZl9TX2/view?usp=sharing).
You can run a trained model on a sequence of images and visualize the results:
```
CUDA_VISIBLE_DEVICES=0 python main.py \
--inference_dir demo/sintel_market_1 \
--output_path output/gmflow-norefine-sintel_market_1 \
--resume pretrained/gmflow_sintel-0c07dcb3.pth
```
You can also predict bidirectional flow with `--pred_bidir_flow` enabled and use `--fwd_bwd_consistency_check` for forward-backward consistency check. More examples can be found in [scripts/demo.sh](scripts/demo.sh).
## Datasets
The datasets used to train and evaluate GMFlow are as follows:
* [FlyingChairs](https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html#flyingchairs)
* [FlyingThings3D](https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html)
* [Sintel](http://sintel.is.tue.mpg.de/)
* [KITTI](http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow)
* [HD1K](http://hci-benchmark.iwr.uni-heidelberg.de/)
By default the dataloader [datasets.py](data/datasets.py) assumes the datasets are located in folder `datasets` and are organized as follows:
```
datasets
βββ FlyingChairs_release
βΒ Β βββ data
βββ FlyingThings3D
βΒ Β βββ frames_cleanpass
βΒ Β βββ frames_finalpass
βΒ Β βββ optical_flow
βββ HD1K
βΒ Β βββ hd1k_challenge
βΒ Β βββ hd1k_flow_gt
βΒ Β βββ hd1k_flow_uncertainty
βΒ Β βββ hd1k_input
βββ KITTI
βΒ Β βββ testing
βΒ Β βββ training
βββ Sintel
βΒ Β βββ test
βΒ Β βββ training
```
It is recommended to symlink your dataset root to `datasets`:
```shell
ln -s $YOUR_DATASET_ROOT datasets
```
Otherwise, you may need to change the corresponding paths in [datasets.py](data/datasets.py).
## Evaluation
You can evaluate a trained GMFlow model by running:
```
CUDA_VISIBLE_DEVICES=0 python main.py --eval --val_dataset things sintel --resume pretrained/gmflow_things-e9887eda.pth
```
More evaluation scripts can be found in [scripts/evaluate.sh](scripts/evaluate.sh).
For submission to Sintel and KITTI online test sets, you can run [scripts/submission.sh](scripts/submission.sh).
## Training
All training scripts on FlyingChairs, FlyingThings3D, Sintel and KITTI datasets can be found in [scripts/train_gmflow.sh](scripts/train_gmflow.sh) and [scripts/train_gmflow_with_refine.sh](scripts/train_gmflow_with_refine.sh).
Note that the basic GMFlow model (without refinement) can be trained on 4x 16GB V100 GPUs. For training GMFlow with refinement, 8x 16GB V100 or 4x 32GB V100 or 4x 40GB A100 GPUs are required by default. You may need to tune the batch size and training iterations according to your hardware.
We support using tensorboard to monitor and visualize the training process. You can first start a tensorboard session with
```shell
tensorboard --logdir checkpoints
```
and then access [http://localhost:6006](http://localhost:6006) in your browser.
## Citation
If you find our work useful in your research, please consider citing our paper:
```
@inproceedings{xu2022gmflow,
title={GMFlow: Learning Optical Flow via Global Matching},
author={Xu, Haofei and Zhang, Jing and Cai, Jianfei and Rezatofighi, Hamid and Tao, Dacheng},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={8121-8130},
year={2022}
}
```
## Acknowledgements
This project would not have been possible without relying on some awesome repos : [RAFT](https://github.com/princeton-vl/RAFT), [LoFTR](https://github.com/zju3dv/LoFTR), [DETR](https://github.com/facebookresearch/detr), [Swin](https://github.com/microsoft/Swin-Transformer), [mmdetection](https://github.com/open-mmlab/mmdetection) and [Detectron2](https://github.com/facebookresearch/detectron2/blob/main/projects/TridentNet/tridentnet/trident_conv.py). We thank the original authors for their excellent work.
|