Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,702 Bytes
1de8821 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import os
from typing import overload, Generator, Dict
from argparse import Namespace
import numpy as np
import torch
from PIL import Image
from omegaconf import OmegaConf
from model.cldm import ControlLDM
from model.gaussian_diffusion import Diffusion
from model.bsrnet import RRDBNet
from model.scunet import SCUNet
from model.swinir import SwinIR
from utils.common import instantiate_from_config, load_file_from_url, count_vram_usage
from utils.face_restoration_helper import FaceRestoreHelper
from utils.helpers import (
Pipeline,
BSRNetPipeline, SwinIRPipeline, SCUNetPipeline,
bicubic_resize
)
from utils.cond_fn import MSEGuidance, WeightedMSEGuidance
MODELS = {
### stage_1 model weights
"bsrnet": "https://github.com/cszn/KAIR/releases/download/v1.0/BSRNet.pth",
# the following checkpoint is up-to-date, but we use the old version in our paper
# "swinir_face": "https://github.com/zsyOAOA/DifFace/releases/download/V1.0/General_Face_ffhq512.pth",
"swinir_face": "https://huggingface.co/lxq007/DiffBIR/resolve/main/face_swinir_v1.ckpt",
"scunet_psnr": "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth",
"swinir_general": "https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt",
### stage_2 model weights
"sd_v21": "https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt",
"v1_face": "https://huggingface.co/lxq007/DiffBIR-v2/resolve/main/v1_face.pth",
"v1_general": "https://huggingface.co/lxq007/DiffBIR-v2/resolve/main/v1_general.pth",
"v2": "https://huggingface.co/lxq007/DiffBIR-v2/resolve/main/v2.pth"
}
def load_model_from_url(url: str) -> Dict[str, torch.Tensor]:
sd_path = load_file_from_url(url, model_dir="weights")
sd = torch.load(sd_path, map_location="cpu")
if "state_dict" in sd:
sd = sd["state_dict"]
if list(sd.keys())[0].startswith("module"):
sd = {k[len("module."):]: v for k, v in sd.items()}
return sd
class InferenceLoop:
def __init__(self, args: Namespace) -> "InferenceLoop":
self.args = args
self.loop_ctx = {}
self.pipeline: Pipeline = None
self.init_stage1_model()
self.init_stage2_model()
self.init_cond_fn()
self.init_pipeline()
@overload
def init_stage1_model(self) -> None:
...
@count_vram_usage
def init_stage2_model(self) -> None:
### load uent, vae, clip
self.cldm: ControlLDM = instantiate_from_config(OmegaConf.load("configs/inference/my_cldm.yaml"))
sd = load_model_from_url(MODELS["sd_v21"])
unused = self.cldm.load_pretrained_sd(sd)
print(f"strictly load pretrained sd_v2.1, unused weights: {unused}")
### load controlnet
if self.args.version == "v1":
if self.args.task == "fr":
control_sd = load_model_from_url(MODELS["v1_face"])
elif self.args.task == "sr":
control_sd = load_model_from_url(MODELS["v1_general"])
else:
raise ValueError(f"DiffBIR v1 doesn't support task: {self.args.task}, please use v2 by passsing '--version v2'")
else:
control_sd = load_model_from_url(MODELS["v2"])
self.cldm.load_controlnet_from_ckpt(control_sd)
print(f"strictly load controlnet weight")
self.cldm.eval().to(self.args.device)
### load diffusion
self.diffusion: Diffusion = instantiate_from_config(OmegaConf.load("configs/inference/diffusion.yaml"))
self.diffusion.to(self.args.device)
def init_cond_fn(self) -> None:
if not self.args.guidance:
self.cond_fn = None
return
if self.args.g_loss == "mse":
cond_fn_cls = MSEGuidance
elif self.args.g_loss == "w_mse":
cond_fn_cls = WeightedMSEGuidance
else:
raise ValueError(self.args.g_loss)
self.cond_fn = cond_fn_cls(
scale=self.args.g_scale, t_start=self.args.g_start, t_stop=self.args.g_stop,
space=self.args.g_space, repeat=self.args.g_repeat
)
@overload
def init_pipeline(self) -> None:
...
def setup(self) -> None:
self.output_dir = self.args.output
os.makedirs(self.output_dir, exist_ok=True)
def lq_loader(self) -> Generator[np.ndarray, None, None]:
img_exts = [".png", ".jpg", ".jpeg"]
if os.path.isdir(self.args.input):
file_names = sorted([
file_name for file_name in os.listdir(self.args.input) if os.path.splitext(file_name)[-1] in img_exts
])
file_paths = [os.path.join(self.args.input, file_name) for file_name in file_names]
else:
assert os.path.splitext(self.args.input)[-1] in img_exts
file_paths = [self.args.input]
def _loader() -> Generator[np.ndarray, None, None]:
for file_path in file_paths:
### load lq
lq = np.array(Image.open(file_path).convert("RGB"))
print(f"load lq: {file_path}")
### set context for saving results
self.loop_ctx["file_stem"] = os.path.splitext(os.path.basename(file_path))[0]
for i in range(self.args.n_samples):
self.loop_ctx["repeat_idx"] = i
yield lq
return _loader
def after_load_lq(self, lq: np.ndarray) -> np.ndarray:
return lq
@torch.no_grad()
def run(self) -> None:
self.setup()
# We don't support batch processing since input images may have different size
loader = self.lq_loader()
for i, lq in enumerate(loader()):
lq = self.after_load_lq(lq)
sample = self.pipeline.run(
lq[None], self.args.steps, 1.0, self.args.tiled,
self.args.tile_size, self.args.tile_stride,
self.args.pos_prompt, self.args.neg_prompt, self.args.cfg_scale,
self.args.better_start,
index=i, input=self.args.input
)[0]
self.save(sample)
def save(self, sample: np.ndarray) -> None:
file_stem, repeat_idx = self.loop_ctx["file_stem"], self.loop_ctx["repeat_idx"]
file_name = f"{file_stem}_{repeat_idx}.png" if self.args.n_samples > 1 else f"{file_stem}.png"
save_path = os.path.join(self.args.output, file_name)
Image.fromarray(sample).save(save_path)
print(f"save result to {save_path}")
class BSRInferenceLoop(InferenceLoop):
@count_vram_usage
def init_stage1_model(self) -> None:
self.bsrnet: RRDBNet = instantiate_from_config(OmegaConf.load("configs/inference/bsrnet.yaml"))
sd = load_model_from_url(MODELS["bsrnet"])
self.bsrnet.load_state_dict(sd, strict=True)
self.bsrnet.eval().to(self.args.device)
def init_pipeline(self) -> None:
self.pipeline = BSRNetPipeline(self.bsrnet, self.cldm, self.diffusion, self.cond_fn, self.args.device, self.args.upscale)
class BFRInferenceLoop(InferenceLoop):
@count_vram_usage
def init_stage1_model(self) -> None:
self.swinir_face: SwinIR = instantiate_from_config(OmegaConf.load("configs/inference/swinir.yaml"))
sd = load_model_from_url(MODELS["swinir_face"])
self.swinir_face.load_state_dict(sd, strict=True)
self.swinir_face.eval().to(self.args.device)
def init_pipeline(self) -> None:
self.pipeline = SwinIRPipeline(self.swinir_face, self.cldm, self.diffusion, self.cond_fn, self.args.device)
def after_load_lq(self, lq: np.ndarray) -> np.ndarray:
# For BFR task, super resolution is achieved by directly upscaling lq
return bicubic_resize(lq, self.args.upscale)
class BIDInferenceLoop(InferenceLoop):
@count_vram_usage
def init_stage1_model(self) -> None:
self.scunet_psnr: SCUNet = instantiate_from_config(OmegaConf.load("configs/inference/scunet.yaml"))
sd = load_model_from_url(MODELS["scunet_psnr"])
self.scunet_psnr.load_state_dict(sd, strict=True)
self.scunet_psnr.eval().to(self.args.device)
def init_pipeline(self) -> None:
self.pipeline = SCUNetPipeline(self.scunet_psnr, self.cldm, self.diffusion, self.cond_fn, self.args.device)
def after_load_lq(self, lq: np.ndarray) -> np.ndarray:
# For BID task, super resolution is achieved by directly upscaling lq
return bicubic_resize(lq, self.args.upscale)
class V1InferenceLoop(InferenceLoop):
@count_vram_usage
def init_stage1_model(self) -> None:
self.swinir: SwinIR = instantiate_from_config(OmegaConf.load("configs/inference/swinir.yaml"))
if self.args.task == "fr":
sd = load_model_from_url(MODELS["swinir_face"])
elif self.args.task == "sr":
sd = load_model_from_url(MODELS["swinir_general"])
else:
raise ValueError(f"DiffBIR v1 doesn't support task: {self.args.task}, please use v2 by passsing '--version v2'")
self.swinir.load_state_dict(sd, strict=True)
self.swinir.eval().to(self.args.device)
def init_pipeline(self) -> None:
self.pipeline = SwinIRPipeline(self.swinir, self.cldm, self.diffusion, self.cond_fn, self.args.device)
def after_load_lq(self, lq: np.ndarray) -> np.ndarray:
# For BFR task, super resolution is achieved by directly upscaling lq
return bicubic_resize(lq, self.args.upscale)
class UnAlignedBFRInferenceLoop(InferenceLoop):
@count_vram_usage
def init_stage1_model(self) -> None:
self.bsrnet: RRDBNet = instantiate_from_config(OmegaConf.load("configs/inference/bsrnet.yaml"))
sd = load_model_from_url(MODELS["bsrnet"])
self.bsrnet.load_state_dict(sd, strict=True)
self.bsrnet.eval().to(self.args.device)
self.swinir_face: SwinIR = instantiate_from_config(OmegaConf.load("configs/inference/swinir.yaml"))
sd = load_model_from_url(MODELS["swinir_face"])
self.swinir_face.load_state_dict(sd, strict=True)
self.swinir_face.eval().to(self.args.device)
def init_pipeline(self) -> None:
self.pipes = {
"bg": BSRNetPipeline(self.bsrnet, self.cldm, self.diffusion, self.cond_fn, self.args.device, self.args.upscale),
"face": SwinIRPipeline(self.swinir_face, self.cldm, self.diffusion, self.cond_fn, self.args.device)
}
self.pipeline = self.pipes["face"]
def setup(self) -> None:
super().setup()
self.cropped_face_dir = os.path.join(self.args.output, "cropped_faces")
os.makedirs(self.cropped_face_dir, exist_ok=True)
self.restored_face_dir = os.path.join(self.args.output, "restored_faces")
os.makedirs(self.restored_face_dir, exist_ok=True)
self.restored_bg_dir = os.path.join(self.args.output, "restored_backgrounds")
os.makedirs(self.restored_bg_dir, exist_ok=True)
def lq_loader(self) -> Generator[np.ndarray, None, None]:
base_loader = super().lq_loader()
self.face_helper = FaceRestoreHelper(
device=self.args.device,
upscale_factor=1,
face_size=512,
use_parse=True,
det_model="retinaface_resnet50"
)
def _loader() -> Generator[np.ndarray, None, None]:
for lq in base_loader():
### set input image
self.face_helper.clean_all()
upscaled_bg = bicubic_resize(lq, self.args.upscale)
self.face_helper.read_image(upscaled_bg)
### get face landmarks for each face
self.face_helper.get_face_landmarks_5(resize=640, eye_dist_threshold=5)
self.face_helper.align_warp_face()
print(f"detect {len(self.face_helper.cropped_faces)} faces")
### restore each face (has been upscaeled)
for i, lq_face in enumerate(self.face_helper.cropped_faces):
self.loop_ctx["is_face"] = True
self.loop_ctx["face_idx"] = i
self.loop_ctx["cropped_face"] = lq_face
yield lq_face
### restore background (hasn't been upscaled)
self.loop_ctx["is_face"] = False
yield lq
return _loader
def after_load_lq(self, lq: np.ndarray) -> np.ndarray:
if self.loop_ctx["is_face"]:
self.pipeline = self.pipes["face"]
else:
self.pipeline = self.pipes["bg"]
return lq
def save(self, sample: np.ndarray) -> None:
file_stem, repeat_idx = self.loop_ctx["file_stem"], self.loop_ctx["repeat_idx"]
if self.loop_ctx["is_face"]:
face_idx = self.loop_ctx["face_idx"]
file_name = f"{file_stem}_{repeat_idx}_face_{face_idx}.png"
Image.fromarray(sample).save(os.path.join(self.restored_face_dir, file_name))
cropped_face = self.loop_ctx["cropped_face"]
Image.fromarray(cropped_face).save(os.path.join(self.cropped_face_dir, file_name))
self.face_helper.add_restored_face(sample)
else:
self.face_helper.get_inverse_affine()
# paste each restored face to the input image
restored_img = self.face_helper.paste_faces_to_input_image(
upsample_img=sample
)
file_name = f"{file_stem}_{repeat_idx}.png"
Image.fromarray(sample).save(os.path.join(self.restored_bg_dir, file_name))
Image.fromarray(restored_img).save(os.path.join(self.output_dir, file_name))
|