File size: 29,440 Bytes
1de8821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
import os 
import math
import time
from typing import Type, Dict, Any, Tuple, Callable

import numpy as np
from einops import rearrange, repeat
import torch
import torch.nn.functional as F

from . import merge
from .utils import isinstance_str, init_generator, join_frame, split_frame, func_warper, join_warper, split_warper


def compute_merge(module: torch.nn.Module, x: torch.Tensor, tome_info: Dict[str, Any]) -> Tuple[Callable, ...]:
    H, original_w = tome_info["size"]
    # original_tokens = original_h * original_w
    # downsample = int(math.ceil(math.sqrt(original_tokens // x.shape[1])))
    downsample = tome_info["args"]["downsample"]

    args = tome_info["args"]
    # generator = module.generator

    # Frame Number and Token Number
    fsize = x.shape[0] // args["batch_size"]
    tsize = x.shape[1]
    # Merge tokens in high resolution layers
    # print(f"[INFO] {args['current_step']} downsample {downsample} time")
    mid = x.shape[0] // 2

    ''' visualize token correspondence '''
    
    label = args["label"].split('_')
    
    # os.makedirs(os.path.join("token_0204_dis", str(args["current_step"])), exist_ok=True)
    # os.makedirs(os.path.join("token_0204_dis", str(args["current_step"]), label[0]), exist_ok=True)
    # out = os.path.join("token_0204_dis", str(args["current_step"]), label[0],  f"correspondence_{label[1]}_{downsample}.png")
    # merge.visualize_correspondence(x[0][None], x[mid][None], ratio=0.2, H=H, out=out)

    # corres_dir = "corres_no_dis_4"
    # os.makedirs(corres_dir, exist_ok=True)
    # if downsample == 1 and label[0] == "unet" and label[1] == "down":
    #     # merge.visualize_flow_correspondence(x[3][None], x[mid][None], flow=args["controller"].step_store["flows"][3], flow_confid=args["controller"].step_store["flow_confids"][3], \
    #     #                                      ratio=0.1, H=(64//downsample), out=f"flow_{label[1]}_{args['current_step']}.png")   
    #     files = os.listdir(corres_dir)
    #     files = [f for f in files if f.startswith(f"{args['current_step']}")]
    #     print(files)
    #     cnt = len(files)
    #     # if files:
    #     #     cnt = int(files[-1].split('_')[1].split('.')[0]) + 1
    #     # else:
    #     #     cnt = 0
    #     path = os.path.join(corres_dir, f"{args['current_step']}_{cnt}.png")
    #     # merge.visualize_cosine_correspondence(x[3][None], x[mid][None], flow=args["controller"].step_store["flows"][3], flow_confid=args["controller"].step_store["flow_confids"][3], \
    #     #                                      ratio=0.1, H=(64//downsample), out=path, controller=args["controller"])    
    #     merge.visualize_correspondence(x[1][None], x[mid][None], flow=args["controller"].step_store["flows"][1], flow_confid=args["controller"].step_store["flow_confids"][1], \
    #                                          ratio=0.1, H=(64//downsample), out=path, controller=args["controller"])    
    #     #ratio=args["local_merge_ratio"], H=(64//downsample), out=f"flow_correspondence.png")

    ''' visulaize token correspondence ended '''

    if downsample <= args["max_downsample"] and downsample > args["min_downsample"]:
        # print(f"[INFO] downsample: {args['min_downsample']} < {downsample} <= {args['max_downsample']} token shape: {x.shape} H: {H}")
        if args["generator"] is None:
            args["generator"] = init_generator(x.device)
            # module.generator = module.generator.manual_seed(123)
        elif args["generator"].device != x.device:
            args["generator"] = init_generator(x.device, fallback=args["generator"])

        # Local Token Merging!

        local_tokens = join_frame(x, fsize)
        m_ls = [join_warper(fsize)]
        u_ls = [split_warper(fsize)]
        unm = 0
        curF = fsize
        
        # Recursive merge multi-frame tokens into one set. Such as 4->1 for 4 frames and 8->2->1 for 8 frames when target stride is 4.
        while curF > 1:
            current_step = args["current_step"]
            if args["controller"] is not None:
                controller, total_step = args["controller"], args["controller"].total_step
            else:
                controller, total_step = None, 1000

            if controller is not None and label[0] == "unet" and label[1] == "down":
                print(f"[INFO] flow merge @ {label[0]} {label[1]} {downsample}")
                start = time.time()
                m, u, ret_dict = merge.bipartite_soft_matching_randframe(
                    local_tokens, curF, args["local_merge_ratio"], unm, generator=args["generator"],
                    target_stride=x.shape[0], align_batch=args["align_batch"],
                    H=H,
                    flow_merge=True, 
                    controller=controller,
                    )
            else:
                m, u, ret_dict = merge.bipartite_soft_matching_randframe(
                    local_tokens, curF, args["local_merge_ratio"], unm, generator=args["generator"],
                    target_stride=x.shape[0], align_batch=args["align_batch"],
                    H=H,
                    flow_merge=False, 
                    controller=controller,
                    )
            
            # if controller is not None and label[1] == "up" and \
            #     controller.merge_period[0] > 0 and \
            #     (current_step + 5) >= min(controller.ToMe_period[1], controller.merge_period[0]) * total_step:
            #     #  or current_step == int(controller.ToMe_period[1] * total_step)):
            #     print(f"[INFO] setting controller merge @ step {current_step} {label} {downsample}")
            #     # ret_dict["scores"].repeat(1, 4, 4)
            #     # import time
            #     # start = time.time()
            #     scores = ret_dict["scores"]
            #     if downsample > 1:
            #         scores = rearrange(scores, "1 (b h1 w1) (h2 w2) -> b h1 w1 h2 w2", h1=H, h2=H, b=fsize-1)
            #         scores = scores.repeat_interleave(downsample, dim=-1).repeat_interleave(downsample, dim=-2)
            #         scores = scores.repeat_interleave(downsample, dim=1).repeat_interleave(downsample, dim=2)
            #         scores = rearrange(scores, "b h1 w1 h2 w2 -> 1 (b h1 w1) (h2 w2)")
            #     # print(f"[INFO] repeat time {time.time() - start}")
            #     # import ipdb; ipdb.set_trace()
            #     # merge.visualize_correspondence_score(x[0][None], x[mid][None], score=ret_dict["scores"][:,:tsize], ratio=0.5, H=H, out="latent_correspondence_1.png")
            #     # merge.visualize_correspondence_score(x[0][None], x[mid][None], score=controller.step_store["corres_scores"][:,:tsize], ratio=0.5, H=H, out="latent_correspondence_1.png")
            #     if controller.step_store["corres_scores"] is None:
            #         controller.step_store["corres_scores"] = scores 
            #     else:
            #         controller.step_store["corres_scores"] += scores 

            
            unm += ret_dict["unm_num"]
            m_ls.append(m)
            u_ls.append(u)
            local_tokens = m(local_tokens)

            # assert (x.shape[1] - unm) % tsize == 0
            # Total token number = current frame number * per-frame token number + unmerged token number
            curF = (local_tokens.shape[1] - unm) // tsize
            # print(f"[INFO] curF {curF}")

        merged_tokens = local_tokens
        
        # Global Token Merging!
        if args["merge_global"]:
            if hasattr(module, "global_tokens") and module.global_tokens is not None:
                # Merge local tokens with global tokens. Randomly determine merging destination.
                if torch.rand(1, generator=args["generator"], device=args["generator"].device) > args["global_rand"]:
                    src_len = local_tokens.shape[1]
                    tokens = torch.cat(
                        [local_tokens, module.global_tokens.to(local_tokens)], dim=1)
                    local_chunk = 0
                else:
                    src_len = module.global_tokens.shape[1]
                    tokens = torch.cat(
                        [module.global_tokens.to(local_tokens), local_tokens], dim=1)
                    local_chunk = 1
                m, u, _ = merge.bipartite_soft_matching_2s(
                    tokens, src_len, args["global_merge_ratio"], args["align_batch"], unmerge_chunk=local_chunk)
                merged_tokens = m(tokens)
                # print(f"[INFO] global merging {local_tokens.shape} {tokens.shape} {merged_tokens.shape}")
                # import ipdb; ipdb.set_trace()
                m_ls.append(m)
                u_ls.append(u)

                # Update global tokens with unmerged local tokens. There should be a better way to do this.
                module.global_tokens = u(merged_tokens).detach().clone().cpu()
            else:
                module.global_tokens = local_tokens.detach().clone().cpu()

        m = func_warper(m_ls)
        u = func_warper(u_ls[::-1])
    else:
        m, u = (merge.do_nothing, merge.do_nothing)
        merged_tokens = x

    # if args["current_step"] >= 30:
    #     x_ = u(m(x))
    #     print(f"[INFO] {label[0]} {label[1]} {downsample}")
    #     for i, j in zip(x, x_):
    #         print(f"[INFO] mean {torch.mean(i).item()} {torch.mean(j).item()}")
    #         print(f"[INFO] std {torch.std(i).item()} {torch.std(j).item()}")
    #     import ipdb; ipdb.set_trace()

    # Return merge op, unmerge op, and merged tokens.
    return m, u, merged_tokens

def PCA_token(token: torch.Tensor, token_h=64, n=3):
    from sklearn.decomposition import PCA
    import cv2
    pca = PCA(n_components=n)  # reduce to 2 dimensions
    # Fit the PCA model to your data and apply the dimensionality reduction
    token = pca.fit_transform(token[0].cpu())
    # import ipdb; ipdb.set_trace()
    token = rearrange(token, '(h w) c -> h w c', h=token_h)
    token = (token - token.min()) / (token.max() - token.min())
    token = (np.clip(token, 0, 1) * 255).astype(np.uint8)
    cv2.imwrite(f'token.png', token)
    return token 

from utils.flow_utils import flow_warp
def warp_token(module: torch.nn.Module, x: torch.Tensor, tome_info: Dict[str, Any]) -> Tuple[Callable, ...]:
    original_h, original_w = tome_info["size"]
    original_tokens = original_h * original_w
    downsample = int(math.ceil(math.sqrt(original_tokens // x.shape[1])))

    args = tome_info["args"]
    # generator = module.generator

    # Frame Number and Token Number
    fsize = x.shape[0] // args["batch_size"]
    tsize = x.shape[1]
    # print(f"[INFO] token size {x.shape[1]}, latent size 64 x 120, downsample {downsample} time")
    # Merge tokens in high resolution layers
    total_step = 50
    warp_period = (0, 1)
    if downsample <= args["max_downsample"] and x.shape[1] == 64 * 120:
        if args["current_step"] >= total_step * warp_period[0] and \
            args["current_step"] <= total_step * warp_period[1]:
            mid = x.shape[0] // 2
            x = rearrange(x, 'b (h w) c -> b c h w', h=64)       
            # import ipdb; ipdb.set_trace()
            # mid_x = repeat(x[mid][None], 'b c h w -> (repeat b) c h w', repeat=x.shape[0])
            for i in range(x.shape[0]):
                if i == mid:
                    continue
                x[i] = flow_warp(x[mid][None], args["flows"][i], mode='nearest')[0] * args["occlusion_masks"][i] + \
                    (1 - args["occlusion_masks"][i]) * x[i]        
            x = rearrange(x, 'b c h w -> b (h w) c', h=64) 
    return x      


def make_tome_block(block_class: Type[torch.nn.Module]) -> Type[torch.nn.Module]:
    """
    Make a patched class on the fly so we don't have to import any specific modules.
    This patch applies ToMe to the forward function of the block.
    """

    class ToMeBlock(block_class):
        # Save for unpatching later
        _parent = block_class

        def _forward(self, x: torch.Tensor, context: torch.Tensor = None, label: str = None) -> torch.Tensor:
            # m_a, m_c, m_m, u_a, u_c, u_m = compute_merge(
            #     self, x, self._tome_info)
            # print(f"[INFO] ~~~ ToMeblock ~~~ {label} ~~~")

            B, A, C = x.shape
            original_h, original_w = self._tome_info["size"]
            original_tokens = original_h * original_w
            downsample = int(math.ceil(math.sqrt(original_tokens // A)))
            # print(f"[INFO] downsample {downsample} time A {A} original_h {original_h} original_w {original_w}")
            self._tome_info["args"]["downsample"] = downsample
            H, W = original_h // downsample, original_w // downsample
            
            if self._tome_info["args"]["controller"] is None:
                non_pad_ratio_h, non_pad_ratio_w = 1, 1
                print(f"[INFO] no padding removal")
            else:
                non_pad_ratio_h, non_pad_ratio_w = self._tome_info["args"]["controller"].non_pad_ratio

            padding_size_w = W - int(W * non_pad_ratio_w)
            padding_size_h = H - int(H * non_pad_ratio_h)
            padding_mask = torch.zeros((H, W), device=x.device, dtype=torch.bool)
            if padding_size_w:
                padding_mask[:, -padding_size_w:] = 1
            if padding_size_h:
                padding_mask[-padding_size_h:, :] = 1
            padding_mask = rearrange(padding_mask, 'h w -> (h w)')
            
            idx_buffer = torch.arange(A, device=x.device, dtype=torch.int64)
            non_pad_idx = idx_buffer[None, ~padding_mask, None]
            # pad_idx = idx_buffer[None, padding_mask, None]
            del idx_buffer, padding_mask
            x_non_pad = torch.gather(x, dim=1, index=non_pad_idx.expand(B, -1, C))
            self._tome_info["args"]["label"] = label
            self._tome_info["size"] = (int(H * non_pad_ratio_h), int(W * non_pad_ratio_w))
            # self._tome_info["non_pad_size"] = (int(H * non_pad_ratio_h), int(W * non_pad_ratio_w))
            # print(f"[INFO] original shape {x.shape} removed padding shape {x_non_pad.shape}")
            m_a, u_a, merged_tokens = compute_merge(
                self, self.norm1(x_non_pad), self._tome_info)
            # current_step, total_step = self._tome_info["args"]["current_step"], self._tome_info["args"]["controller"].total_step
            # print(f'[INFO] {int(self._tome_info["args"]["controller"].ToMe_period[1] * total_step)} {current_step} {total_step}')
            # if downsample == 1 and label == "unet_up" and \
            #     self._tome_info["args"]["controller"].merge_period[0] > 0 and \
            #     (current_step >= self._tome_info["args"]["controller"].merge_period[0] * total_step \
            #      or current_step == int(self._tome_info["args"]["controller"].ToMe_period[1] * total_step)):
            #     print(f"[INFO] setting controller merge @ step {self._tome_info['args']['current_step']}")
            #     self._tome_info["args"]["controller"].set_merge(m_a, u_a)
            # m_a, u_a, merged_tokens = compute_merge(
            #     self, self.norm1(x), self._tome_info)
            # This is where the meat of the computation happens
            # test = u_a(self.attn1(m_a(self.norm1(x)), context=context if self.disable_self_attn else None))
            # import ipdb; ipdb.set_trace()
            # x = u_a(merged_tokens)
            ''' global merging '''
            if self._tome_info["args"]["controller"] is None:
                print(f"[INFO] local + global merging ... ")
                x_non_pad = u_a(self.attn1(merged_tokens,
                        context=context if self.disable_self_attn else None)) + x_non_pad
            else:
                x_non_pad = u_a(self.attn1(m_a(self.norm1(x_non_pad)),
                        context=context if self.disable_self_attn else None)) + x_non_pad
            # print(label, downsample, self.disable_self_attn)
            # x = u_a(self.attn1(m_a(self.norm1(x)),
            #         context=context if self.disable_self_attn else None)) + x

            # attn_output = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None)
            # attn_output = warp_token(self, attn_output, self._tome_info)
            # x = attn_output + x

            
            # attn_out = self.attn2(self.norm2(x), context=context)
            # m_a, u_a, merged_tokens = compute_merge(
            #     self, attn_out, self._tome_info)
            # x = u_a(m_a(attn_out)) + x

            # attn_output = self.attn2(self.norm2(x), context=context)
            # attn_output = warp_token(self, attn_output, self._tome_info)
            # x = attn_output + x
            x_non_pad = self.attn2(self.norm2(x_non_pad), context=context) + x_non_pad
            x_non_pad = self.ff(self.norm3(x_non_pad)) + x_non_pad
            x.scatter_(dim=1, index=non_pad_idx.expand(B, -1, C), src=x_non_pad)
            del x_non_pad
            self._tome_info["size"] = (original_h, original_w)
            torch.cuda.empty_cache()
            # x = self.attn2(self.norm2(x), context=context) + x
            # x = self.ff(self.norm3(x)) + x

            return x

    return ToMeBlock


def make_diffusers_tome_block(block_class: Type[torch.nn.Module]) -> Type[torch.nn.Module]:
    """
    Make a patched class for a diffusers model.
    This patch applies ToMe to the forward function of the block.
    """
    class ToMeBlock(block_class):
        # Save for unpatching later
        _parent = block_class

        def forward(
            self,
            hidden_states,
            attention_mask=None,
            encoder_hidden_states=None,
            encoder_attention_mask=None,
            timestep=None,
            cross_attention_kwargs=None,
            class_labels=None,
        ) -> torch.Tensor:

            if self.use_ada_layer_norm:
                norm_hidden_states = self.norm1(hidden_states, timestep)
            elif self.use_ada_layer_norm_zero:
                norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                    hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
                )
            else:
                norm_hidden_states = self.norm1(hidden_states)

            # Merge input tokens
                
            m_a, u_a, merged_tokens = compute_merge(
                self, norm_hidden_states, self._tome_info)
            norm_hidden_states = merged_tokens

            # 1. Self-Attention
            cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
            # tt = time.time()
            attn_output = self.attn1(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
                attention_mask=attention_mask,
                **cross_attention_kwargs,
            )
            # print(time.time() - tt)
            if self.use_ada_layer_norm_zero:
                attn_output = gate_msa.unsqueeze(1) * attn_output

            # Unmerge output tokens
            attn_output = u_a(attn_output)
            hidden_states = attn_output + hidden_states

            if self.attn2 is not None:
                norm_hidden_states = (
                    self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(
                        hidden_states)
                )

                # 2. Cross-Attention
                attn_output = self.attn2(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=encoder_attention_mask,
                    **cross_attention_kwargs,
                )

                hidden_states = attn_output + hidden_states

            # 3. Feed-forward
            norm_hidden_states = self.norm3(hidden_states)

            if self.use_ada_layer_norm_zero:
                norm_hidden_states = norm_hidden_states * \
                    (1 + scale_mlp[:, None]) + shift_mlp[:, None]

            ff_output = self.ff(norm_hidden_states)

            if self.use_ada_layer_norm_zero:
                ff_output = gate_mlp.unsqueeze(1) * ff_output
            
            hidden_states = ff_output + hidden_states
            
            return hidden_states

    return ToMeBlock


def hook_tome_model(model: torch.nn.Module):
    """ Adds a forward pre hook to get the image size. This hook can be removed with remove_patch. """
    def hook(module, args):
        # print(args[0].shape)
        module._tome_info["size"] = (args[0].shape[2], args[0].shape[3])
        return None
    model._tome_info["hooks"].append(model.register_forward_pre_hook(hook))


def hook_tome_module(module: torch.nn.Module):
    """ Adds a forward pre hook to initialize random number generator.
        All modules share the same generator state to keep their randomness in VidToMe consistent in one pass.
        This hook can be removed with remove_patch. """
    def hook(module, args):
        # import ipdb; ipdb.set_trace()
        if not hasattr(module, "generator"):
            module.generator = init_generator(args[0].device)
        elif module.generator.device != args[0].device:
            module.generator = init_generator(
                args[0].device, fallback=module.generator)
        else:
            return None

        # module.generator = module.generator.manual_seed(module._tome_info["args"]["seed"])
        return None

    module._tome_info["hooks"].append(module.register_forward_pre_hook(hook))


def apply_patch(
        model: torch.nn.Module,
        local_merge_ratio: float = 0.9,
        merge_global: bool = False,
        global_merge_ratio = 0.8,
        max_downsample: int = 2,
        min_downsample: int = 0,
        seed: int = 123,
        batch_size: int = 2,
        include_control: bool = False,
        align_batch: bool = False,
        target_stride: int = 4,
        global_rand=0.5):
    """
    Patches a stable diffusion model with VidToMe.
    Apply this to the highest level stable diffusion object (i.e., it should have a .model.diffusion_model).

    Important Args:
     - model: A top level Stable Diffusion module to patch in place. Should have a ".model.diffusion_model"
     - local_merge_ratio: The ratio of tokens to merge locally. I.e., 0.9 would merge 90% src tokens.
              If there are 4 frames in a chunk (3 src, 1 dst), the compression ratio will be 1.3 / 4.0.
              And the largest compression ratio is 0.25 (when local_merge_ratio = 1.0).
              Higher values result in more consistency, but with more visual quality loss.
     - merge_global: Whether or not to include global token merging.
     - global_merge_ratio: The ratio of tokens to merge locally. I.e., 0.8 would merge 80% src tokens.
                           When find significant degradation in video quality. Try to lower the value.

    Args to tinker with if you want:
     - max_downsample [1, 2, 4, or 8]: Apply VidToMe to layers with at most this amount of downsampling.
                                       E.g., 1 only applies to layers with no downsampling (4/15) while
                                       8 applies to all layers (15/15). I recommend a value of 1 or 2.
     - seed: Manual random seed. 
     - batch_size: Video batch size. Number of video chunks in one pass. When processing one video, it 
                   should be 2 (cond + uncond) or 3 (when using PnP, source + cond + uncond).
     - include_control: Whether or not to patch ControlNet model.
     - align_batch: Whether or not to align similarity matching maps of samples in the batch. It should
                    be True when using PnP as control.
     - target_stride: Stride between target frames. I.e., when target_stride = 4, there is 1 target frame
                      in any 4 consecutive frames. 
     - global_rand: Probability in global token merging src/dst split. Global tokens are always src when
                    global_rand = 1.0 and always dst when global_rand = 0.0 .
    """

    # Make sure the module is not currently patched
    remove_patch(model)

    is_diffusers = isinstance_str(
        model, "DiffusionPipeline") or isinstance_str(model, "ModelMixin")
    
    if not is_diffusers:
        if (not hasattr(model, "model") or not hasattr(model.model, "diffusion_model")) \
            and not hasattr(model, "unet"):
            # Provided model not supported
            raise RuntimeError(
                "Provided model was not a Stable Diffusion / Latent Diffusion model, as expected.")
        else:
            diffusion_model = model.unet if hasattr(model, "unet") else model.model.diffusion_model
    else:
        # Supports "pipe.unet" and "unet"
        diffusion_model = model.unet if hasattr(model, "unet") else model

    if isinstance_str(model, "StableDiffusionControlNetPipeline") and include_control:
        diffusion_models = [diffusion_model, model.controlnet]
    else:
        diffusion_models = [diffusion_model]

    if not is_diffusers and hasattr(model, "controlnet"):
        diffusion_models = [diffusion_model, model.controlnet]

    for diffusion_model in diffusion_models:
        diffusion_model._tome_info = {
            "size": None,
            "hooks": [],
            "args": {
                "max_downsample": max_downsample,
                "min_downsample": min_downsample,
                "generator": None,
                "seed": seed,
                "batch_size": batch_size,
                "align_batch": align_batch,
                "merge_global": merge_global,
                "global_merge_ratio": global_merge_ratio,
                "local_merge_ratio": local_merge_ratio,
                "global_rand": global_rand,
                "target_stride": target_stride,
                "current_step": 0,
                "frame_ids": [0],
                "flows": None,
                "occlusion_masks": None,
                "flow_confids": None,
                "label": "",
                "downsample": 1,
                "non_pad_size": (0, 0),
                "controller": None,
            }
        }
        hook_tome_model(diffusion_model)

        for name, module in diffusion_model.named_modules():
            # If for some reason this has a different name, create an issue and I'll fix it
            # if isinstance_str(module, "BasicTransformerBlock") and "down_blocks" not in name:
            # print(module.__class__.__name__)
            if isinstance_str(module, "BasicTransformerBlock"):
                make_tome_block_fn = make_diffusers_tome_block if is_diffusers else make_tome_block
                module.__class__ = make_tome_block_fn(module.__class__)
                module._tome_info = diffusion_model._tome_info
                hook_tome_module(module)

                # Something introduced in SD 2.0 (LDM only)
                if not hasattr(module, "disable_self_attn") and not is_diffusers:
                    module.disable_self_attn = False

                # Something needed for older versions of diffusers
                if not hasattr(module, "use_ada_layer_norm_zero") and is_diffusers:
                    module.use_ada_layer_norm = False
                    module.use_ada_layer_norm_zero = False
        # import ipdb; ipdb.set_trace()
    return model


def remove_patch(model: torch.nn.Module):
    """ Removes a patch from a ToMe Diffusion module if it was already patched. """
    # For diffusers
    modelu = model.unet if hasattr(model, "unet") else model
    model_ls = [modelu]
    if hasattr(model, "controlnet"):
        model_ls.append(model.controlnet)
    for model in model_ls:
        for _, module in model.named_modules():
            if hasattr(module, "_tome_info"):
                for hook in module._tome_info["hooks"]:
                    hook.remove()
                module._tome_info["hooks"].clear()

            if module.__class__.__name__ == "ToMeBlock":
                module.__class__ = module._parent

    return model


def update_patch(model: torch.nn.Module, **kwargs):
    """ Update arguments in patched modules """
    # For diffusers
    model0 = model.unet if hasattr(model, "unet") else model
    model_ls = [model0]
    if hasattr(model, "controlnet"):
        model_ls.append(model.controlnet)
    for model in model_ls:
        for _, module in model.named_modules():
            if hasattr(module, "_tome_info"):
                for k, v in kwargs.items():
                    # setattr(module, k, v)
                    if k in module._tome_info["args"]:
                        module._tome_info["args"][k] = v
                        # print(f"[INFO] update {k} to {v} in {module.__class__.__name__}")
    return model


def collect_from_patch(model: torch.nn.Module, attr="tome"):
    """ Collect attributes in patched modules """
    # For diffusers
    model0 = model.unet if hasattr(model, "unet") else model
    model_ls = [model0]
    if hasattr(model, "controlnet"):
        model_ls.append(model.controlnet)
    ret_dict = dict()
    for model in model_ls:
        for name, module in model.named_modules():
            if hasattr(module, attr):
                res = getattr(module, attr)
                ret_dict[name] = res

    return ret_dict