Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,440 Bytes
1de8821 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
import os
import math
import time
from typing import Type, Dict, Any, Tuple, Callable
import numpy as np
from einops import rearrange, repeat
import torch
import torch.nn.functional as F
from . import merge
from .utils import isinstance_str, init_generator, join_frame, split_frame, func_warper, join_warper, split_warper
def compute_merge(module: torch.nn.Module, x: torch.Tensor, tome_info: Dict[str, Any]) -> Tuple[Callable, ...]:
H, original_w = tome_info["size"]
# original_tokens = original_h * original_w
# downsample = int(math.ceil(math.sqrt(original_tokens // x.shape[1])))
downsample = tome_info["args"]["downsample"]
args = tome_info["args"]
# generator = module.generator
# Frame Number and Token Number
fsize = x.shape[0] // args["batch_size"]
tsize = x.shape[1]
# Merge tokens in high resolution layers
# print(f"[INFO] {args['current_step']} downsample {downsample} time")
mid = x.shape[0] // 2
''' visualize token correspondence '''
label = args["label"].split('_')
# os.makedirs(os.path.join("token_0204_dis", str(args["current_step"])), exist_ok=True)
# os.makedirs(os.path.join("token_0204_dis", str(args["current_step"]), label[0]), exist_ok=True)
# out = os.path.join("token_0204_dis", str(args["current_step"]), label[0], f"correspondence_{label[1]}_{downsample}.png")
# merge.visualize_correspondence(x[0][None], x[mid][None], ratio=0.2, H=H, out=out)
# corres_dir = "corres_no_dis_4"
# os.makedirs(corres_dir, exist_ok=True)
# if downsample == 1 and label[0] == "unet" and label[1] == "down":
# # merge.visualize_flow_correspondence(x[3][None], x[mid][None], flow=args["controller"].step_store["flows"][3], flow_confid=args["controller"].step_store["flow_confids"][3], \
# # ratio=0.1, H=(64//downsample), out=f"flow_{label[1]}_{args['current_step']}.png")
# files = os.listdir(corres_dir)
# files = [f for f in files if f.startswith(f"{args['current_step']}")]
# print(files)
# cnt = len(files)
# # if files:
# # cnt = int(files[-1].split('_')[1].split('.')[0]) + 1
# # else:
# # cnt = 0
# path = os.path.join(corres_dir, f"{args['current_step']}_{cnt}.png")
# # merge.visualize_cosine_correspondence(x[3][None], x[mid][None], flow=args["controller"].step_store["flows"][3], flow_confid=args["controller"].step_store["flow_confids"][3], \
# # ratio=0.1, H=(64//downsample), out=path, controller=args["controller"])
# merge.visualize_correspondence(x[1][None], x[mid][None], flow=args["controller"].step_store["flows"][1], flow_confid=args["controller"].step_store["flow_confids"][1], \
# ratio=0.1, H=(64//downsample), out=path, controller=args["controller"])
# #ratio=args["local_merge_ratio"], H=(64//downsample), out=f"flow_correspondence.png")
''' visulaize token correspondence ended '''
if downsample <= args["max_downsample"] and downsample > args["min_downsample"]:
# print(f"[INFO] downsample: {args['min_downsample']} < {downsample} <= {args['max_downsample']} token shape: {x.shape} H: {H}")
if args["generator"] is None:
args["generator"] = init_generator(x.device)
# module.generator = module.generator.manual_seed(123)
elif args["generator"].device != x.device:
args["generator"] = init_generator(x.device, fallback=args["generator"])
# Local Token Merging!
local_tokens = join_frame(x, fsize)
m_ls = [join_warper(fsize)]
u_ls = [split_warper(fsize)]
unm = 0
curF = fsize
# Recursive merge multi-frame tokens into one set. Such as 4->1 for 4 frames and 8->2->1 for 8 frames when target stride is 4.
while curF > 1:
current_step = args["current_step"]
if args["controller"] is not None:
controller, total_step = args["controller"], args["controller"].total_step
else:
controller, total_step = None, 1000
if controller is not None and label[0] == "unet" and label[1] == "down":
print(f"[INFO] flow merge @ {label[0]} {label[1]} {downsample}")
start = time.time()
m, u, ret_dict = merge.bipartite_soft_matching_randframe(
local_tokens, curF, args["local_merge_ratio"], unm, generator=args["generator"],
target_stride=x.shape[0], align_batch=args["align_batch"],
H=H,
flow_merge=True,
controller=controller,
)
else:
m, u, ret_dict = merge.bipartite_soft_matching_randframe(
local_tokens, curF, args["local_merge_ratio"], unm, generator=args["generator"],
target_stride=x.shape[0], align_batch=args["align_batch"],
H=H,
flow_merge=False,
controller=controller,
)
# if controller is not None and label[1] == "up" and \
# controller.merge_period[0] > 0 and \
# (current_step + 5) >= min(controller.ToMe_period[1], controller.merge_period[0]) * total_step:
# # or current_step == int(controller.ToMe_period[1] * total_step)):
# print(f"[INFO] setting controller merge @ step {current_step} {label} {downsample}")
# # ret_dict["scores"].repeat(1, 4, 4)
# # import time
# # start = time.time()
# scores = ret_dict["scores"]
# if downsample > 1:
# scores = rearrange(scores, "1 (b h1 w1) (h2 w2) -> b h1 w1 h2 w2", h1=H, h2=H, b=fsize-1)
# scores = scores.repeat_interleave(downsample, dim=-1).repeat_interleave(downsample, dim=-2)
# scores = scores.repeat_interleave(downsample, dim=1).repeat_interleave(downsample, dim=2)
# scores = rearrange(scores, "b h1 w1 h2 w2 -> 1 (b h1 w1) (h2 w2)")
# # print(f"[INFO] repeat time {time.time() - start}")
# # import ipdb; ipdb.set_trace()
# # merge.visualize_correspondence_score(x[0][None], x[mid][None], score=ret_dict["scores"][:,:tsize], ratio=0.5, H=H, out="latent_correspondence_1.png")
# # merge.visualize_correspondence_score(x[0][None], x[mid][None], score=controller.step_store["corres_scores"][:,:tsize], ratio=0.5, H=H, out="latent_correspondence_1.png")
# if controller.step_store["corres_scores"] is None:
# controller.step_store["corres_scores"] = scores
# else:
# controller.step_store["corres_scores"] += scores
unm += ret_dict["unm_num"]
m_ls.append(m)
u_ls.append(u)
local_tokens = m(local_tokens)
# assert (x.shape[1] - unm) % tsize == 0
# Total token number = current frame number * per-frame token number + unmerged token number
curF = (local_tokens.shape[1] - unm) // tsize
# print(f"[INFO] curF {curF}")
merged_tokens = local_tokens
# Global Token Merging!
if args["merge_global"]:
if hasattr(module, "global_tokens") and module.global_tokens is not None:
# Merge local tokens with global tokens. Randomly determine merging destination.
if torch.rand(1, generator=args["generator"], device=args["generator"].device) > args["global_rand"]:
src_len = local_tokens.shape[1]
tokens = torch.cat(
[local_tokens, module.global_tokens.to(local_tokens)], dim=1)
local_chunk = 0
else:
src_len = module.global_tokens.shape[1]
tokens = torch.cat(
[module.global_tokens.to(local_tokens), local_tokens], dim=1)
local_chunk = 1
m, u, _ = merge.bipartite_soft_matching_2s(
tokens, src_len, args["global_merge_ratio"], args["align_batch"], unmerge_chunk=local_chunk)
merged_tokens = m(tokens)
# print(f"[INFO] global merging {local_tokens.shape} {tokens.shape} {merged_tokens.shape}")
# import ipdb; ipdb.set_trace()
m_ls.append(m)
u_ls.append(u)
# Update global tokens with unmerged local tokens. There should be a better way to do this.
module.global_tokens = u(merged_tokens).detach().clone().cpu()
else:
module.global_tokens = local_tokens.detach().clone().cpu()
m = func_warper(m_ls)
u = func_warper(u_ls[::-1])
else:
m, u = (merge.do_nothing, merge.do_nothing)
merged_tokens = x
# if args["current_step"] >= 30:
# x_ = u(m(x))
# print(f"[INFO] {label[0]} {label[1]} {downsample}")
# for i, j in zip(x, x_):
# print(f"[INFO] mean {torch.mean(i).item()} {torch.mean(j).item()}")
# print(f"[INFO] std {torch.std(i).item()} {torch.std(j).item()}")
# import ipdb; ipdb.set_trace()
# Return merge op, unmerge op, and merged tokens.
return m, u, merged_tokens
def PCA_token(token: torch.Tensor, token_h=64, n=3):
from sklearn.decomposition import PCA
import cv2
pca = PCA(n_components=n) # reduce to 2 dimensions
# Fit the PCA model to your data and apply the dimensionality reduction
token = pca.fit_transform(token[0].cpu())
# import ipdb; ipdb.set_trace()
token = rearrange(token, '(h w) c -> h w c', h=token_h)
token = (token - token.min()) / (token.max() - token.min())
token = (np.clip(token, 0, 1) * 255).astype(np.uint8)
cv2.imwrite(f'token.png', token)
return token
from utils.flow_utils import flow_warp
def warp_token(module: torch.nn.Module, x: torch.Tensor, tome_info: Dict[str, Any]) -> Tuple[Callable, ...]:
original_h, original_w = tome_info["size"]
original_tokens = original_h * original_w
downsample = int(math.ceil(math.sqrt(original_tokens // x.shape[1])))
args = tome_info["args"]
# generator = module.generator
# Frame Number and Token Number
fsize = x.shape[0] // args["batch_size"]
tsize = x.shape[1]
# print(f"[INFO] token size {x.shape[1]}, latent size 64 x 120, downsample {downsample} time")
# Merge tokens in high resolution layers
total_step = 50
warp_period = (0, 1)
if downsample <= args["max_downsample"] and x.shape[1] == 64 * 120:
if args["current_step"] >= total_step * warp_period[0] and \
args["current_step"] <= total_step * warp_period[1]:
mid = x.shape[0] // 2
x = rearrange(x, 'b (h w) c -> b c h w', h=64)
# import ipdb; ipdb.set_trace()
# mid_x = repeat(x[mid][None], 'b c h w -> (repeat b) c h w', repeat=x.shape[0])
for i in range(x.shape[0]):
if i == mid:
continue
x[i] = flow_warp(x[mid][None], args["flows"][i], mode='nearest')[0] * args["occlusion_masks"][i] + \
(1 - args["occlusion_masks"][i]) * x[i]
x = rearrange(x, 'b c h w -> b (h w) c', h=64)
return x
def make_tome_block(block_class: Type[torch.nn.Module]) -> Type[torch.nn.Module]:
"""
Make a patched class on the fly so we don't have to import any specific modules.
This patch applies ToMe to the forward function of the block.
"""
class ToMeBlock(block_class):
# Save for unpatching later
_parent = block_class
def _forward(self, x: torch.Tensor, context: torch.Tensor = None, label: str = None) -> torch.Tensor:
# m_a, m_c, m_m, u_a, u_c, u_m = compute_merge(
# self, x, self._tome_info)
# print(f"[INFO] ~~~ ToMeblock ~~~ {label} ~~~")
B, A, C = x.shape
original_h, original_w = self._tome_info["size"]
original_tokens = original_h * original_w
downsample = int(math.ceil(math.sqrt(original_tokens // A)))
# print(f"[INFO] downsample {downsample} time A {A} original_h {original_h} original_w {original_w}")
self._tome_info["args"]["downsample"] = downsample
H, W = original_h // downsample, original_w // downsample
if self._tome_info["args"]["controller"] is None:
non_pad_ratio_h, non_pad_ratio_w = 1, 1
print(f"[INFO] no padding removal")
else:
non_pad_ratio_h, non_pad_ratio_w = self._tome_info["args"]["controller"].non_pad_ratio
padding_size_w = W - int(W * non_pad_ratio_w)
padding_size_h = H - int(H * non_pad_ratio_h)
padding_mask = torch.zeros((H, W), device=x.device, dtype=torch.bool)
if padding_size_w:
padding_mask[:, -padding_size_w:] = 1
if padding_size_h:
padding_mask[-padding_size_h:, :] = 1
padding_mask = rearrange(padding_mask, 'h w -> (h w)')
idx_buffer = torch.arange(A, device=x.device, dtype=torch.int64)
non_pad_idx = idx_buffer[None, ~padding_mask, None]
# pad_idx = idx_buffer[None, padding_mask, None]
del idx_buffer, padding_mask
x_non_pad = torch.gather(x, dim=1, index=non_pad_idx.expand(B, -1, C))
self._tome_info["args"]["label"] = label
self._tome_info["size"] = (int(H * non_pad_ratio_h), int(W * non_pad_ratio_w))
# self._tome_info["non_pad_size"] = (int(H * non_pad_ratio_h), int(W * non_pad_ratio_w))
# print(f"[INFO] original shape {x.shape} removed padding shape {x_non_pad.shape}")
m_a, u_a, merged_tokens = compute_merge(
self, self.norm1(x_non_pad), self._tome_info)
# current_step, total_step = self._tome_info["args"]["current_step"], self._tome_info["args"]["controller"].total_step
# print(f'[INFO] {int(self._tome_info["args"]["controller"].ToMe_period[1] * total_step)} {current_step} {total_step}')
# if downsample == 1 and label == "unet_up" and \
# self._tome_info["args"]["controller"].merge_period[0] > 0 and \
# (current_step >= self._tome_info["args"]["controller"].merge_period[0] * total_step \
# or current_step == int(self._tome_info["args"]["controller"].ToMe_period[1] * total_step)):
# print(f"[INFO] setting controller merge @ step {self._tome_info['args']['current_step']}")
# self._tome_info["args"]["controller"].set_merge(m_a, u_a)
# m_a, u_a, merged_tokens = compute_merge(
# self, self.norm1(x), self._tome_info)
# This is where the meat of the computation happens
# test = u_a(self.attn1(m_a(self.norm1(x)), context=context if self.disable_self_attn else None))
# import ipdb; ipdb.set_trace()
# x = u_a(merged_tokens)
''' global merging '''
if self._tome_info["args"]["controller"] is None:
print(f"[INFO] local + global merging ... ")
x_non_pad = u_a(self.attn1(merged_tokens,
context=context if self.disable_self_attn else None)) + x_non_pad
else:
x_non_pad = u_a(self.attn1(m_a(self.norm1(x_non_pad)),
context=context if self.disable_self_attn else None)) + x_non_pad
# print(label, downsample, self.disable_self_attn)
# x = u_a(self.attn1(m_a(self.norm1(x)),
# context=context if self.disable_self_attn else None)) + x
# attn_output = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None)
# attn_output = warp_token(self, attn_output, self._tome_info)
# x = attn_output + x
# attn_out = self.attn2(self.norm2(x), context=context)
# m_a, u_a, merged_tokens = compute_merge(
# self, attn_out, self._tome_info)
# x = u_a(m_a(attn_out)) + x
# attn_output = self.attn2(self.norm2(x), context=context)
# attn_output = warp_token(self, attn_output, self._tome_info)
# x = attn_output + x
x_non_pad = self.attn2(self.norm2(x_non_pad), context=context) + x_non_pad
x_non_pad = self.ff(self.norm3(x_non_pad)) + x_non_pad
x.scatter_(dim=1, index=non_pad_idx.expand(B, -1, C), src=x_non_pad)
del x_non_pad
self._tome_info["size"] = (original_h, original_w)
torch.cuda.empty_cache()
# x = self.attn2(self.norm2(x), context=context) + x
# x = self.ff(self.norm3(x)) + x
return x
return ToMeBlock
def make_diffusers_tome_block(block_class: Type[torch.nn.Module]) -> Type[torch.nn.Module]:
"""
Make a patched class for a diffusers model.
This patch applies ToMe to the forward function of the block.
"""
class ToMeBlock(block_class):
# Save for unpatching later
_parent = block_class
def forward(
self,
hidden_states,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
timestep=None,
cross_attention_kwargs=None,
class_labels=None,
) -> torch.Tensor:
if self.use_ada_layer_norm:
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
else:
norm_hidden_states = self.norm1(hidden_states)
# Merge input tokens
m_a, u_a, merged_tokens = compute_merge(
self, norm_hidden_states, self._tome_info)
norm_hidden_states = merged_tokens
# 1. Self-Attention
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
# tt = time.time()
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
# print(time.time() - tt)
if self.use_ada_layer_norm_zero:
attn_output = gate_msa.unsqueeze(1) * attn_output
# Unmerge output tokens
attn_output = u_a(attn_output)
hidden_states = attn_output + hidden_states
if self.attn2 is not None:
norm_hidden_states = (
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(
hidden_states)
)
# 2. Cross-Attention
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 3. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = norm_hidden_states * \
(1 + scale_mlp[:, None]) + shift_mlp[:, None]
ff_output = self.ff(norm_hidden_states)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = ff_output + hidden_states
return hidden_states
return ToMeBlock
def hook_tome_model(model: torch.nn.Module):
""" Adds a forward pre hook to get the image size. This hook can be removed with remove_patch. """
def hook(module, args):
# print(args[0].shape)
module._tome_info["size"] = (args[0].shape[2], args[0].shape[3])
return None
model._tome_info["hooks"].append(model.register_forward_pre_hook(hook))
def hook_tome_module(module: torch.nn.Module):
""" Adds a forward pre hook to initialize random number generator.
All modules share the same generator state to keep their randomness in VidToMe consistent in one pass.
This hook can be removed with remove_patch. """
def hook(module, args):
# import ipdb; ipdb.set_trace()
if not hasattr(module, "generator"):
module.generator = init_generator(args[0].device)
elif module.generator.device != args[0].device:
module.generator = init_generator(
args[0].device, fallback=module.generator)
else:
return None
# module.generator = module.generator.manual_seed(module._tome_info["args"]["seed"])
return None
module._tome_info["hooks"].append(module.register_forward_pre_hook(hook))
def apply_patch(
model: torch.nn.Module,
local_merge_ratio: float = 0.9,
merge_global: bool = False,
global_merge_ratio = 0.8,
max_downsample: int = 2,
min_downsample: int = 0,
seed: int = 123,
batch_size: int = 2,
include_control: bool = False,
align_batch: bool = False,
target_stride: int = 4,
global_rand=0.5):
"""
Patches a stable diffusion model with VidToMe.
Apply this to the highest level stable diffusion object (i.e., it should have a .model.diffusion_model).
Important Args:
- model: A top level Stable Diffusion module to patch in place. Should have a ".model.diffusion_model"
- local_merge_ratio: The ratio of tokens to merge locally. I.e., 0.9 would merge 90% src tokens.
If there are 4 frames in a chunk (3 src, 1 dst), the compression ratio will be 1.3 / 4.0.
And the largest compression ratio is 0.25 (when local_merge_ratio = 1.0).
Higher values result in more consistency, but with more visual quality loss.
- merge_global: Whether or not to include global token merging.
- global_merge_ratio: The ratio of tokens to merge locally. I.e., 0.8 would merge 80% src tokens.
When find significant degradation in video quality. Try to lower the value.
Args to tinker with if you want:
- max_downsample [1, 2, 4, or 8]: Apply VidToMe to layers with at most this amount of downsampling.
E.g., 1 only applies to layers with no downsampling (4/15) while
8 applies to all layers (15/15). I recommend a value of 1 or 2.
- seed: Manual random seed.
- batch_size: Video batch size. Number of video chunks in one pass. When processing one video, it
should be 2 (cond + uncond) or 3 (when using PnP, source + cond + uncond).
- include_control: Whether or not to patch ControlNet model.
- align_batch: Whether or not to align similarity matching maps of samples in the batch. It should
be True when using PnP as control.
- target_stride: Stride between target frames. I.e., when target_stride = 4, there is 1 target frame
in any 4 consecutive frames.
- global_rand: Probability in global token merging src/dst split. Global tokens are always src when
global_rand = 1.0 and always dst when global_rand = 0.0 .
"""
# Make sure the module is not currently patched
remove_patch(model)
is_diffusers = isinstance_str(
model, "DiffusionPipeline") or isinstance_str(model, "ModelMixin")
if not is_diffusers:
if (not hasattr(model, "model") or not hasattr(model.model, "diffusion_model")) \
and not hasattr(model, "unet"):
# Provided model not supported
raise RuntimeError(
"Provided model was not a Stable Diffusion / Latent Diffusion model, as expected.")
else:
diffusion_model = model.unet if hasattr(model, "unet") else model.model.diffusion_model
else:
# Supports "pipe.unet" and "unet"
diffusion_model = model.unet if hasattr(model, "unet") else model
if isinstance_str(model, "StableDiffusionControlNetPipeline") and include_control:
diffusion_models = [diffusion_model, model.controlnet]
else:
diffusion_models = [diffusion_model]
if not is_diffusers and hasattr(model, "controlnet"):
diffusion_models = [diffusion_model, model.controlnet]
for diffusion_model in diffusion_models:
diffusion_model._tome_info = {
"size": None,
"hooks": [],
"args": {
"max_downsample": max_downsample,
"min_downsample": min_downsample,
"generator": None,
"seed": seed,
"batch_size": batch_size,
"align_batch": align_batch,
"merge_global": merge_global,
"global_merge_ratio": global_merge_ratio,
"local_merge_ratio": local_merge_ratio,
"global_rand": global_rand,
"target_stride": target_stride,
"current_step": 0,
"frame_ids": [0],
"flows": None,
"occlusion_masks": None,
"flow_confids": None,
"label": "",
"downsample": 1,
"non_pad_size": (0, 0),
"controller": None,
}
}
hook_tome_model(diffusion_model)
for name, module in diffusion_model.named_modules():
# If for some reason this has a different name, create an issue and I'll fix it
# if isinstance_str(module, "BasicTransformerBlock") and "down_blocks" not in name:
# print(module.__class__.__name__)
if isinstance_str(module, "BasicTransformerBlock"):
make_tome_block_fn = make_diffusers_tome_block if is_diffusers else make_tome_block
module.__class__ = make_tome_block_fn(module.__class__)
module._tome_info = diffusion_model._tome_info
hook_tome_module(module)
# Something introduced in SD 2.0 (LDM only)
if not hasattr(module, "disable_self_attn") and not is_diffusers:
module.disable_self_attn = False
# Something needed for older versions of diffusers
if not hasattr(module, "use_ada_layer_norm_zero") and is_diffusers:
module.use_ada_layer_norm = False
module.use_ada_layer_norm_zero = False
# import ipdb; ipdb.set_trace()
return model
def remove_patch(model: torch.nn.Module):
""" Removes a patch from a ToMe Diffusion module if it was already patched. """
# For diffusers
modelu = model.unet if hasattr(model, "unet") else model
model_ls = [modelu]
if hasattr(model, "controlnet"):
model_ls.append(model.controlnet)
for model in model_ls:
for _, module in model.named_modules():
if hasattr(module, "_tome_info"):
for hook in module._tome_info["hooks"]:
hook.remove()
module._tome_info["hooks"].clear()
if module.__class__.__name__ == "ToMeBlock":
module.__class__ = module._parent
return model
def update_patch(model: torch.nn.Module, **kwargs):
""" Update arguments in patched modules """
# For diffusers
model0 = model.unet if hasattr(model, "unet") else model
model_ls = [model0]
if hasattr(model, "controlnet"):
model_ls.append(model.controlnet)
for model in model_ls:
for _, module in model.named_modules():
if hasattr(module, "_tome_info"):
for k, v in kwargs.items():
# setattr(module, k, v)
if k in module._tome_info["args"]:
module._tome_info["args"][k] = v
# print(f"[INFO] update {k} to {v} in {module.__class__.__name__}")
return model
def collect_from_patch(model: torch.nn.Module, attr="tome"):
""" Collect attributes in patched modules """
# For diffusers
model0 = model.unet if hasattr(model, "unet") else model
model_ls = [model0]
if hasattr(model, "controlnet"):
model_ls.append(model.controlnet)
ret_dict = dict()
for model in model_ls:
for name, module in model.named_modules():
if hasattr(module, attr):
res = getattr(module, attr)
ret_dict[name] = res
return ret_dict
|