Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,430 Bytes
1de8821 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
import gc
import torch
import torch.nn.functional as F
from einops import repeat, rearrange
from vidtome import merge
from utils.flow_utils import flow_warp, coords_grid
# AdaIn
def calc_mean_std(feat, eps=1e-5):
# eps is a small value added to the variance to avoid divide-by-zero.
size = feat.size()
assert (len(size) == 4)
N, C = size[:2]
feat_var = feat.view(N, C, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(N, C, 1, 1)
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
return feat_mean, feat_std
class AttentionControl():
def __init__(self,
warp_period=(0.0, 0.0),
merge_period=(0.0, 0.0),
merge_ratio=(0.3, 0.3),
ToMe_period=(0.0, 1.0),
mask_period=(0.0, 0.0),
cross_period=(0.0, 0.0),
ada_period=(0.0, 0.0),
inner_strength=1.0,
loose_cfatnn=False,
flow_merge=True,
):
self.cur_frame_idx = 0
self.step_store = self.get_empty_store()
self.cur_step = 0
self.total_step = 0
self.cur_index = 0
self.init_store = False
self.restore = False
self.update = False
self.flow = None
self.mask = None
self.cldm = None
self.decoded_imgs = []
self.restorex0 = True
self.updatex0 = False
self.inner_strength = inner_strength
self.cross_period = cross_period
self.mask_period = mask_period
self.ada_period = ada_period
self.warp_period = warp_period
self.ToMe_period = ToMe_period
self.merge_period = merge_period
self.merge_ratio = merge_ratio
self.keyframe_idx = 0
self.flow_merge = flow_merge
self.distances = {}
self.flow_correspondence = {}
self.non_pad_ratio = (1.0, 1.0)
self.up_resolution = 1280 if loose_cfatnn else 1281
@staticmethod
def get_empty_store():
return {
'first': [],
'previous': [],
'x0_previous': [],
'first_ada': [],
'pre_x0': [],
"pre_keyframe_lq": None,
"flows": None,
"occ_masks": None,
"flow_confids": None,
"merge": None,
"unmerge": None,
"corres_scores": None,
"flows2": None,
"flow_confids2": None,
}
def forward(self, context, is_cross: bool, place_in_unet: str):
cross_period = (self.total_step * self.cross_period[0],
self.total_step * self.cross_period[1])
if not is_cross and place_in_unet == 'up' and context.shape[
2] < self.up_resolution:
if self.init_store:
self.step_store['first'].append(context.detach())
self.step_store['previous'].append(context.detach())
if self.update:
tmp = context.clone().detach()
if self.restore and self.cur_step >= cross_period[0] and \
self.cur_step <= cross_period[1]:
# context = torch.cat(
# (self.step_store['first'][self.cur_index],
# self.step_store['previous'][self.cur_index]),
# dim=1).clone()
context = self.step_store['previous'][self.cur_index].clone()
if self.update:
self.step_store['previous'][self.cur_index] = tmp
self.cur_index += 1
# print(is_cross, place_in_unet, context.shape[2])
# import ipdb; ipdb.set_trace()
return context
def update_x0(self, x0, cur_frame=0):
# if self.init_store:
# self.step_store['x0_previous'].append(x0.detach())
# style_mean, style_std = calc_mean_std(x0.detach())
# self.step_store['first_ada'].append(style_mean.detach())
# self.step_store['first_ada'].append(style_std.detach())
# if self.updatex0:
# tmp = x0.clone().detach()
if self.restorex0:
# if self.cur_step >= self.total_step * self.ada_period[
# 0] and self.cur_step <= self.total_step * self.ada_period[
# 1]:
# x0 = F.instance_norm(x0) * self.step_store['first_ada'][
# 2 * self.cur_step +
# 1] + self.step_store['first_ada'][2 * self.cur_step]
if self.cur_step >= self.total_step * self.warp_period[
0] and self.cur_step < int(self.total_step * self.warp_period[1]):
# mid_x = repeat(x[mid][None], 'b c h w -> (repeat b) c h w', repeat=x.shape[0])
mid = x0.shape[0] // 2
if len(self.step_store["pre_x0"]) == int(self.total_step * self.warp_period[1]):
print(f"[INFO] keyframe latent warping @ step {self.cur_step}...")
x0[mid] = (1 - self.step_store["occ_masks"][mid]) * x0[mid] + \
flow_warp(self.step_store["pre_x0"][self.cur_step][None], self.step_store["flows"][mid], mode='nearest')[0] * self.step_store["occ_masks"][mid]
print(f"[INFO] local latent warping @ step {self.cur_step}...")
for i in range(x0.shape[0]):
if i == mid:
continue
x0[i] = (1 - self.step_store["occ_masks"][i]) * x0[i] + \
flow_warp(x0[mid][None], self.step_store["flows"][i], mode='nearest')[0] * self.step_store["occ_masks"][i]
# x = rearrange(x, 'b c h w -> b (h w) c', h=64)
# self.step_store['x0_previous'][self.cur_step] = tmp
# print(f"[INFO] storeing {self.cur_frame_idx} th frame x0 for step {self.cur_step}...")
if len(self.step_store["pre_x0"]) < int(self.total_step * self.warp_period[1]):
self.step_store['pre_x0'].append(x0[mid])
else:
self.step_store['pre_x0'][self.cur_step] = x0[mid]
return x0
def merge_x0(self, x0, merge_ratio):
# print(f"[INFO] {self.total_step * self.merge_period[0]} {self.cur_step} {int(self.total_step * self.merge_period[1])} ...")
if self.cur_step >= self.total_step * self.merge_period[0] and \
self.cur_step < int(self.total_step * self.merge_period[1]):
print(f"[INFO] latent merging @ step {self.cur_step}...")
B, C, H, W = x0.shape
non_pad_ratio_h, non_pad_ratio_w = self.non_pad_ratio
padding_size_w = W - int(W * non_pad_ratio_w)
padding_size_h = H - int(H * non_pad_ratio_h)
non_pad_w = W - padding_size_w
non_pad_h = H - padding_size_h
padding_mask = torch.zeros((H, W), device=x0.device, dtype=torch.bool)
if padding_size_w:
padding_mask[:, -padding_size_w:] = 1
if padding_size_h:
padding_mask[-padding_size_h:, :] = 1
padding_mask = rearrange(padding_mask, 'h w -> (h w)')
idx_buffer = torch.arange(H*W, device=x0.device, dtype=torch.int64)
non_pad_idx = idx_buffer[None, ~padding_mask, None]
del idx_buffer, padding_mask
x0 = rearrange(x0, 'b c h w -> b (h w) c', h=H)
x_non_pad = torch.gather(x0, dim=1, index=non_pad_idx.expand(B, -1, C))
# import ipdb; ipdb.set_trace()
# merge.visualize_correspondence(x_non_pad[0][None], x_non_pad[B//2][None], ratio=0.3, H=H, out="latent_correspondence.png")
# m, u, ret_dict = merge.bipartite_soft_matching_randframe(
# x_non_pad, B, merge_ratio, 0, target_stride=B)
import copy
flows = copy.deepcopy(self.step_store["flows"])
for i in range(B):
if flows[i] is not None:
flows[i] = flows[i][:, :, :non_pad_h, :non_pad_w]
# merge.visualize_flow_correspondence(x_non_pad[1][None], x_non_pad[B // 2][None], flow=flows[1], flow_confid=self.step_store["flow_confids"][1], \
# ratio=0.8, H=H, out=f"flow_correspondence_08.png")
# import ipdb; ipdb.set_trace()
x_non_pad = rearrange(x_non_pad, 'b a c -> 1 (b a) c')
m, u, ret_dict = merge.bipartite_soft_matching_randframe(
x_non_pad, B, merge_ratio, 0, target_stride=B,
H=H,
flow=flows,
flow_confid=self.step_store["flow_confids"],
)
x_non_pad = u(m(x_non_pad))
# x_non_pad = self.step_store["unmerge"](self.step_store["merge"](x_non_pad))
x_non_pad = rearrange(x_non_pad, '1 (b a) c -> b a c', b=B)
# print(torch.mean(x0[0]).item(), torch.mean(x0[1]).item(), torch.mean(x0[2]).item(), torch.mean(x0[3]).item(), torch.mean(x0[4]).item())
# print(torch.std(x0[0]).item(), torch.std(x0[1]).item(), torch.std(x0[2]).item(), torch.std(x0[3]).item(), torch.std(x0[4]).item())
# import ipdb; ipdb.set_trace()
x0.scatter_(dim=1, index=non_pad_idx.expand(B, -1, C), src=x_non_pad)
x0 = rearrange(x0, 'b (h w) c -> b c h w ', h=H)
# import ipdb; ipdb.set_trace()
return x0
def merge_x0_scores(self, x0, merge_ratio, merge_mode="replace"):
# print(f"[INFO] {self.total_step * self.merge_period[0]} {self.cur_step} {int(self.total_step * self.merge_period[1])} ...")
# import ipdb; ipdb.set_trace()
if self.cur_step >= self.total_step * self.merge_period[0] and \
self.cur_step < int(self.total_step * self.merge_period[1]):
print(f"[INFO] latent merging @ step {self.cur_step}...")
B, C, H, W = x0.shape
non_pad_ratio_h, non_pad_ratio_w = self.non_pad_ratio
padding_size_w = W - int(W * non_pad_ratio_w)
padding_size_h = H - int(H * non_pad_ratio_h)
padding_mask = torch.zeros((H, W), device=x0.device, dtype=torch.bool)
if padding_size_w:
padding_mask[:, -padding_size_w:] = 1
if padding_size_h:
padding_mask[-padding_size_h:, :] = 1
padding_mask = rearrange(padding_mask, 'h w -> (h w)')
idx_buffer = torch.arange(H*W, device=x0.device, dtype=torch.int64)
non_pad_idx = idx_buffer[None, ~padding_mask, None]
x0 = rearrange(x0, 'b c h w -> b (h w) c', h=H)
x_non_pad = torch.gather(x0, dim=1, index=non_pad_idx.expand(B, -1, C))
x_non_pad_A, x_non_pad_N = x_non_pad.shape[1], x_non_pad.shape[1] * B
mid = B // 2
x_non_pad_ = x_non_pad.clone()
x_non_pad = rearrange(x_non_pad, 'b a c -> 1 (b a) c')
# import ipdb; ipdb.set_trace()
idx_buffer = torch.arange(x_non_pad_N, device=x0.device, dtype=torch.int64)
randf = torch.tensor(B // 2, dtype=torch.int).to(x0.device)
# print(f"[INFO] {randf.item()} th frame as target")
dst_select = ((torch.div(idx_buffer, x_non_pad_A, rounding_mode='floor')) % B == randf).to(torch.bool)
# a_idx: src index. b_idx: dst index
a_idx = idx_buffer[None, ~dst_select, None]
b_idx = idx_buffer[None, dst_select, None]
del idx_buffer, padding_mask
num_dst = b_idx.shape[1]
# b, _, _ = x_non_pad.shape
b = 1
src = torch.gather(x_non_pad, dim=1, index=a_idx.expand(b, x_non_pad_N - num_dst, C))
tar = torch.gather(x_non_pad, dim=1, index=b_idx.expand(b, num_dst, C))
# tar = x_non_pad[mid][None]
# src = torch.cat((x_non_pad[:mid], x_non_pad[mid+1:]), dim=0)
# src = rearrange(src, 'b n c -> 1 (b n) c')
# print(f"[INFO] {x_non_pad.shape} {src.shape} {tar.shape} ...")
# print(f"[INFO] maximum score {torch.max(self.step_store['corres_scores'])} ...")
flow_src_idx = self.flow_correspondence[H][0]
flow_tar_idx = self.flow_correspondence[H][1]
flow_confid = self.step_store["flow_confids"][:mid] + self.step_store["flow_confids"][mid+1:]
flow_confid = torch.cat(flow_confid, dim=0)
flow_confid = rearrange(flow_confid, 'b h w -> 1 (b h w)')
scores = F.normalize(self.step_store["corres_scores"], p=2, dim=-1)
flow_confid -= (torch.max(flow_confid) - torch.max(scores))
# merge.visualize_correspondence_score(x_non_pad_[0][None], x_non_pad_[mid][None],
# score=scores[:,:x_non_pad_A],
# ratio=0.2, H=H-padding_size_h, out="latent_correspondence.png")
# import ipdb; ipdb.set_trace()
scores[:, flow_src_idx[0, :, 0], flow_tar_idx[0, :, 0]] += (flow_confid[:, flow_src_idx[0, :, 0]] * 0.3)
# merge.visualize_correspondence_score(x_non_pad_[0][None], x_non_pad_[mid][None],
# score=scores[:,:x_non_pad_A],
# ratio=0.2, H=H-padding_size_h, out="latent_correspondence_flow.png")
# import ipdb; ipdb.set_trace()
r = min(src.shape[1], int(src.shape[1] * merge_ratio))
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
tar_idx = torch.gather(node_idx[..., None], dim=-2, index=src_idx)
unm = torch.gather(src, dim=-2, index=unm_idx.expand(-1, -1, C))
if merge_mode != "replace":
src = torch.gather(src, dim=-2, index=src_idx.expand(-1, -1, C))
# In other mode such as mean, combine matched src and dst tokens.
tar = tar.scatter_reduce(-2, tar_idx.expand(-1, -1, C),
src, reduce=merge_mode, include_self=True)
# In replace mode, just cat unmerged tokens and tar tokens. Ignore src tokens.
# token = torch.cat([unm, tar], dim=1)
# unm_len = unm_idx.shape[1]
# unm, tar = token[..., :unm_len, :], token[..., unm_len:, :]
src = torch.gather(tar, dim=-2, index=tar_idx.expand(-1, -1, C))
# Combine back to the original shape
# x_non_pad = torch.zeros(b, x_non_pad_N, C, device=x0.device, dtype=x0.dtype)
# Scatter dst tokens
x_non_pad.scatter_(dim=-2, index=b_idx.expand(b, -1, C), src=tar)
# Scatter unmerged tokens
x_non_pad.scatter_(dim=-2, index=torch.gather(a_idx.expand(b, -1, 1),
dim=1, index=unm_idx).expand(-1, -1, C), src=unm)
# Scatter src tokens
x_non_pad.scatter_(dim=-2, index=torch.gather(a_idx.expand(b, -1, 1),
dim=1, index=src_idx).expand(-1, -1, C), src=src)
x_non_pad = rearrange(x_non_pad, '1 (b a) c -> b a c', a=x_non_pad_A)
x0.scatter_(dim=1, index=non_pad_idx.expand(B, -1, C), src=x_non_pad)
x0 = rearrange(x0, 'b (h w) c -> b c h w ', h=H)
return x0
def set_distance(self, B, H, W, radius, device):
y, x = torch.meshgrid(torch.arange(H), torch.arange(W))
coords = torch.stack((y, x), dim=-1).float().to(device)
coords = rearrange(coords, 'h w c -> (h w) c')
# Calculate the Euclidean distance between all pixels
distances = torch.cdist(coords, coords)
# radius = W // 30
radius = 1 if radius == 0 else radius
# print(f"[INFO] W: {W} Radius: {radius} ")
distances //= radius
distances = torch.exp(-distances)
# distances += torch.diag_embed(torch.ones(A)).to(metric.device)
distances = repeat(distances, 'h a -> 1 (b h) a', b=B)
self.distances[H] = distances
def set_flow_correspondence(self, B, H, W, key_idx, flow_confid, flow):
if len(flow) != B - 1:
flow_confid = flow_confid[:key_idx] + flow_confid[key_idx+1:]
flow = flow[:key_idx] + flow[key_idx+1:]
flow_confid = torch.cat(flow_confid, dim=0)
flow = torch.cat(flow, dim=0)
flow_confid = rearrange(flow_confid, 'b h w -> 1 (b h w)')
edge_idx = flow_confid.argsort(dim=-1, descending=True)[..., None]
src_idx = edge_idx[..., :, :] # Merged Tokens
A = H * W
src_idx_tensor = src_idx[0, : ,0]
f = src_idx_tensor // A
id = src_idx_tensor % A
x = id % W
y = id // W
# Stack the results into a 2D tensor
src_fxy = torch.stack((f, x, y), dim=1)
# import ipdb; ipdb.set_trace()
grid = coords_grid(B-1, H, W).to(flow.device) + flow # [F-1, 2, H, W]
x = grid[src_fxy[:, 0], 0, src_fxy[:, 2], src_fxy[:, 1]].clamp(0, W-1).long()
y = grid[src_fxy[:, 0], 1, src_fxy[:, 2], src_fxy[:, 1]].clamp(0, H-1).long()
tar_xy = torch.stack((x, y), dim=1)
tar_idx = y * W + x
tar_idx = rearrange(tar_idx, ' d -> 1 d 1')
self.flow_correspondence[H] = (src_idx, tar_idx)
def set_merge(self, merge, unmerge):
self.step_store["merge"] = merge
self.step_store["unmerge"] = unmerge
def set_warp(self, flows, masks, flow_confids=None):
self.step_store["flows"] = flows
self.step_store["occ_masks"] = masks
if flow_confids is not None:
self.step_store["flow_confids"] = flow_confids
def set_warp2(self, flows, flow_confids):
self.step_store["flows2"] = flows
self.step_store["flow_confids2"] = flow_confids
def set_pre_keyframe_lq(self, pre_keyframe_lq):
self.step_store["pre_keyframe_lq"] = pre_keyframe_lq
def __call__(self, context, is_cross: bool, place_in_unet: str):
context = self.forward(context, is_cross, place_in_unet)
return context
def set_cur_frame_idx(self, frame_idx):
self.cur_frame_idx = frame_idx
def set_step(self, step):
self.cur_step = step
def set_total_step(self, total_step):
self.total_step = total_step
self.cur_index = 0
def clear_store(self):
del self.step_store
torch.cuda.empty_cache()
gc.collect()
self.step_store = self.get_empty_store()
def set_task(self, task, restore_step=1.0):
self.init_store = False
self.restore = False
self.update = False
self.cur_index = 0
self.restore_step = restore_step
self.updatex0 = False
self.restorex0 = False
if 'initfirst' in task:
self.init_store = True
self.clear_store()
if 'updatestyle' in task:
self.update = True
if 'keepstyle' in task:
self.restore = True
if 'updatex0' in task:
self.updatex0 = True
if 'keepx0' in task:
self.restorex0 = True
|