File size: 19,430 Bytes
1de8821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import gc

import torch
import torch.nn.functional as F

from einops import repeat, rearrange
from vidtome import merge
from utils.flow_utils import flow_warp, coords_grid

# AdaIn


def calc_mean_std(feat, eps=1e-5):
    # eps is a small value added to the variance to avoid divide-by-zero.
    size = feat.size()
    assert (len(size) == 4)
    N, C = size[:2]
    feat_var = feat.view(N, C, -1).var(dim=2) + eps
    feat_std = feat_var.sqrt().view(N, C, 1, 1)
    feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
    return feat_mean, feat_std


class AttentionControl():

    def __init__(self,
                 warp_period=(0.0, 0.0),
                 merge_period=(0.0, 0.0),
                 merge_ratio=(0.3, 0.3),
                 ToMe_period=(0.0, 1.0),
                 mask_period=(0.0, 0.0),
                 cross_period=(0.0, 0.0),
                 ada_period=(0.0, 0.0),
                 inner_strength=1.0,
                 loose_cfatnn=False,
                 flow_merge=True, 
                ):
        
        self.cur_frame_idx = 0

        self.step_store = self.get_empty_store()
        self.cur_step = 0
        self.total_step = 0
        self.cur_index = 0
        self.init_store = False
        self.restore = False
        self.update = False
        self.flow = None
        self.mask = None
        self.cldm = None
        self.decoded_imgs = []
        self.restorex0 = True
        self.updatex0 = False
        self.inner_strength = inner_strength
        self.cross_period = cross_period
        self.mask_period = mask_period
        self.ada_period = ada_period
        self.warp_period = warp_period
        self.ToMe_period = ToMe_period
        self.merge_period = merge_period
        self.merge_ratio = merge_ratio
        self.keyframe_idx = 0
        self.flow_merge = flow_merge
        self.distances = {}
        self.flow_correspondence = {}
        self.non_pad_ratio = (1.0, 1.0)
        self.up_resolution = 1280 if loose_cfatnn else 1281

    @staticmethod
    def get_empty_store():
        return {
            'first': [],
            'previous': [],
            'x0_previous': [],
            'first_ada': [],
            'pre_x0': [],
            "pre_keyframe_lq": None,
            "flows": None,
            "occ_masks": None,
            "flow_confids": None,
            "merge": None,
            "unmerge": None,
            "corres_scores": None,
            "flows2": None,
            "flow_confids2": None,
        }

    def forward(self, context, is_cross: bool, place_in_unet: str):
        cross_period = (self.total_step * self.cross_period[0],
                        self.total_step * self.cross_period[1])
        if not is_cross and place_in_unet == 'up' and context.shape[
                2] < self.up_resolution:
            if self.init_store:
                self.step_store['first'].append(context.detach())
                self.step_store['previous'].append(context.detach())
            if self.update:
                tmp = context.clone().detach()
            if self.restore and self.cur_step >= cross_period[0] and \
                    self.cur_step <= cross_period[1]:
                # context = torch.cat(
                #     (self.step_store['first'][self.cur_index],
                #      self.step_store['previous'][self.cur_index]),
                #     dim=1).clone()
                context = self.step_store['previous'][self.cur_index].clone()
            if self.update:
                self.step_store['previous'][self.cur_index] = tmp
            self.cur_index += 1
        # print(is_cross, place_in_unet, context.shape[2])
        # import ipdb; ipdb.set_trace()
        return context

    def update_x0(self, x0, cur_frame=0):
        # if self.init_store:
        #     self.step_store['x0_previous'].append(x0.detach())
        #     style_mean, style_std = calc_mean_std(x0.detach())
        #     self.step_store['first_ada'].append(style_mean.detach())
        #     self.step_store['first_ada'].append(style_std.detach())
        # if self.updatex0:
        #     tmp = x0.clone().detach()
        if self.restorex0:
            # if self.cur_step >= self.total_step * self.ada_period[
            #         0] and self.cur_step <= self.total_step * self.ada_period[
            #             1]:
            #     x0 = F.instance_norm(x0) * self.step_store['first_ada'][
            #         2 * self.cur_step +
            #         1] + self.step_store['first_ada'][2 * self.cur_step]
            if self.cur_step >= self.total_step * self.warp_period[
                    0] and self.cur_step < int(self.total_step * self.warp_period[1]):
                
                # mid_x = repeat(x[mid][None], 'b c h w -> (repeat b) c h w', repeat=x.shape[0])
                mid = x0.shape[0] // 2
                if len(self.step_store["pre_x0"]) == int(self.total_step * self.warp_period[1]):
                    print(f"[INFO] keyframe latent warping @ step {self.cur_step}...")
                    x0[mid] = (1 - self.step_store["occ_masks"][mid]) * x0[mid] + \
                        flow_warp(self.step_store["pre_x0"][self.cur_step][None], self.step_store["flows"][mid], mode='nearest')[0] * self.step_store["occ_masks"][mid] 
                    
                print(f"[INFO] local latent warping @ step {self.cur_step}...")
                for i in range(x0.shape[0]):
                    if i == mid:
                        continue
                    x0[i] = (1 - self.step_store["occ_masks"][i]) * x0[i] + \
                        flow_warp(x0[mid][None], self.step_store["flows"][i], mode='nearest')[0] * self.step_store["occ_masks"][i] 
                # x = rearrange(x, 'b c h w -> b (h w) c', h=64) 
                # self.step_store['x0_previous'][self.cur_step] = tmp
                # print(f"[INFO] storeing {self.cur_frame_idx} th frame x0 for step {self.cur_step}...")
                if len(self.step_store["pre_x0"]) < int(self.total_step * self.warp_period[1]):
                    self.step_store['pre_x0'].append(x0[mid])
                else:
                    self.step_store['pre_x0'][self.cur_step] = x0[mid]

        return x0

    def merge_x0(self, x0, merge_ratio):
        # print(f"[INFO] {self.total_step * self.merge_period[0]} {self.cur_step} {int(self.total_step * self.merge_period[1])} ...")
        if self.cur_step >= self.total_step * self.merge_period[0] and \
            self.cur_step < int(self.total_step * self.merge_period[1]):
            print(f"[INFO] latent merging @ step {self.cur_step}...")

            B, C, H, W = x0.shape
            non_pad_ratio_h, non_pad_ratio_w = self.non_pad_ratio
            padding_size_w = W - int(W * non_pad_ratio_w)
            padding_size_h = H - int(H * non_pad_ratio_h)
            non_pad_w = W - padding_size_w
            non_pad_h = H - padding_size_h
            padding_mask = torch.zeros((H, W), device=x0.device, dtype=torch.bool)
            if padding_size_w:
                padding_mask[:, -padding_size_w:] = 1
            if padding_size_h:
                padding_mask[-padding_size_h:, :] = 1
            padding_mask = rearrange(padding_mask, 'h w -> (h w)')
            
            idx_buffer = torch.arange(H*W, device=x0.device, dtype=torch.int64)
            non_pad_idx = idx_buffer[None, ~padding_mask, None]
            del idx_buffer, padding_mask
            x0 = rearrange(x0, 'b c h w -> b (h w) c', h=H)
            x_non_pad = torch.gather(x0, dim=1, index=non_pad_idx.expand(B, -1, C))
            # import ipdb; ipdb.set_trace()
            # merge.visualize_correspondence(x_non_pad[0][None], x_non_pad[B//2][None], ratio=0.3, H=H, out="latent_correspondence.png")

            # m, u, ret_dict = merge.bipartite_soft_matching_randframe(
            #                     x_non_pad, B, merge_ratio, 0, target_stride=B)
            import copy
            flows = copy.deepcopy(self.step_store["flows"])
            for i in range(B):
                if flows[i] is not None:
                    flows[i] = flows[i][:, :, :non_pad_h, :non_pad_w]
            # merge.visualize_flow_correspondence(x_non_pad[1][None], x_non_pad[B // 2][None], flow=flows[1], flow_confid=self.step_store["flow_confids"][1], \
            #                                  ratio=0.8, H=H, out=f"flow_correspondence_08.png")
            # import ipdb; ipdb.set_trace()
            x_non_pad = rearrange(x_non_pad, 'b a c -> 1 (b a) c')
            m, u, ret_dict = merge.bipartite_soft_matching_randframe(
                    x_non_pad, B, merge_ratio, 0, target_stride=B, 
                    H=H,
                    flow=flows, 
                    flow_confid=self.step_store["flow_confids"],
                    )
            x_non_pad = u(m(x_non_pad))
            # x_non_pad = self.step_store["unmerge"](self.step_store["merge"](x_non_pad))
            x_non_pad = rearrange(x_non_pad, '1 (b a) c -> b a c', b=B)
            # print(torch.mean(x0[0]).item(), torch.mean(x0[1]).item(), torch.mean(x0[2]).item(), torch.mean(x0[3]).item(), torch.mean(x0[4]).item())
            # print(torch.std(x0[0]).item(), torch.std(x0[1]).item(), torch.std(x0[2]).item(), torch.std(x0[3]).item(), torch.std(x0[4]).item())
            # import ipdb; ipdb.set_trace()
            x0.scatter_(dim=1, index=non_pad_idx.expand(B, -1, C), src=x_non_pad)
            x0 = rearrange(x0, 'b (h w) c -> b c h w ', h=H)
            # import ipdb; ipdb.set_trace()
        
        return x0
    
    def merge_x0_scores(self, x0, merge_ratio, merge_mode="replace"):
        # print(f"[INFO] {self.total_step * self.merge_period[0]} {self.cur_step} {int(self.total_step * self.merge_period[1])} ...")
        # import ipdb; ipdb.set_trace()
        if self.cur_step >= self.total_step * self.merge_period[0] and \
            self.cur_step < int(self.total_step * self.merge_period[1]):
            print(f"[INFO] latent merging @ step {self.cur_step}...")

            B, C, H, W = x0.shape
            non_pad_ratio_h, non_pad_ratio_w = self.non_pad_ratio
            padding_size_w = W - int(W * non_pad_ratio_w)
            padding_size_h = H - int(H * non_pad_ratio_h)
            padding_mask = torch.zeros((H, W), device=x0.device, dtype=torch.bool)
            if padding_size_w:
                padding_mask[:, -padding_size_w:] = 1
            if padding_size_h:
                padding_mask[-padding_size_h:, :] = 1
            padding_mask = rearrange(padding_mask, 'h w -> (h w)')
            
            idx_buffer = torch.arange(H*W, device=x0.device, dtype=torch.int64)
            non_pad_idx = idx_buffer[None, ~padding_mask, None]
            x0 = rearrange(x0, 'b c h w -> b (h w) c', h=H)
            x_non_pad = torch.gather(x0, dim=1, index=non_pad_idx.expand(B, -1, C))
            x_non_pad_A, x_non_pad_N = x_non_pad.shape[1], x_non_pad.shape[1] * B
            mid = B // 2
            
            x_non_pad_ = x_non_pad.clone()
            x_non_pad = rearrange(x_non_pad, 'b a c -> 1 (b a) c')
            # import ipdb; ipdb.set_trace()

            idx_buffer = torch.arange(x_non_pad_N, device=x0.device, dtype=torch.int64)
            randf = torch.tensor(B // 2, dtype=torch.int).to(x0.device)
            # print(f"[INFO] {randf.item()} th frame as target")
            dst_select = ((torch.div(idx_buffer, x_non_pad_A, rounding_mode='floor')) % B == randf).to(torch.bool)
            # a_idx: src index. b_idx: dst index
            a_idx = idx_buffer[None, ~dst_select, None] 
            b_idx = idx_buffer[None, dst_select, None]
            del idx_buffer, padding_mask
            num_dst = b_idx.shape[1]
            # b, _, _ = x_non_pad.shape
            b = 1
            src = torch.gather(x_non_pad, dim=1, index=a_idx.expand(b, x_non_pad_N - num_dst, C))
            tar = torch.gather(x_non_pad, dim=1, index=b_idx.expand(b, num_dst, C))
            # tar = x_non_pad[mid][None]
            # src = torch.cat((x_non_pad[:mid], x_non_pad[mid+1:]), dim=0)
            # src = rearrange(src, 'b n c -> 1 (b n) c')
            # print(f"[INFO] {x_non_pad.shape} {src.shape} {tar.shape} ...")
            # print(f"[INFO] maximum score {torch.max(self.step_store['corres_scores'])} ...")
            flow_src_idx = self.flow_correspondence[H][0]
            flow_tar_idx = self.flow_correspondence[H][1]
            flow_confid = self.step_store["flow_confids"][:mid] + self.step_store["flow_confids"][mid+1:]
            flow_confid = torch.cat(flow_confid, dim=0) 
            flow_confid = rearrange(flow_confid, 'b h w -> 1 (b h w)')
            scores = F.normalize(self.step_store["corres_scores"], p=2, dim=-1)

            flow_confid -= (torch.max(flow_confid) - torch.max(scores)) 

            # merge.visualize_correspondence_score(x_non_pad_[0][None], x_non_pad_[mid][None], 
            #                                    score=scores[:,:x_non_pad_A],
            #                                    ratio=0.2, H=H-padding_size_h, out="latent_correspondence.png")
            # import ipdb; ipdb.set_trace()
            scores[:, flow_src_idx[0, :, 0], flow_tar_idx[0, :, 0]] += (flow_confid[:, flow_src_idx[0, :, 0]] * 0.3)
            # merge.visualize_correspondence_score(x_non_pad_[0][None], x_non_pad_[mid][None], 
            #                                    score=scores[:,:x_non_pad_A],
            #                                    ratio=0.2, H=H-padding_size_h, out="latent_correspondence_flow.png")

            # import ipdb; ipdb.set_trace()
            r = min(src.shape[1], int(src.shape[1] * merge_ratio))
            node_max, node_idx = scores.max(dim=-1)
            edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
            unm_idx = edge_idx[..., r:, :]  # Unmerged Tokens
            src_idx = edge_idx[..., :r, :]  # Merged Tokens 
            tar_idx = torch.gather(node_idx[..., None], dim=-2, index=src_idx)
            unm = torch.gather(src, dim=-2, index=unm_idx.expand(-1, -1, C))
            if merge_mode != "replace":
                src = torch.gather(src, dim=-2, index=src_idx.expand(-1, -1, C))
                # In other mode such as mean, combine matched src and dst tokens.
                tar = tar.scatter_reduce(-2, tar_idx.expand(-1, -1, C),
                                        src, reduce=merge_mode, include_self=True)
            # In replace mode, just cat unmerged tokens and tar tokens. Ignore src tokens.
            # token = torch.cat([unm, tar], dim=1)

            # unm_len = unm_idx.shape[1]
            # unm, tar = token[..., :unm_len, :], token[..., unm_len:, :]
            src = torch.gather(tar, dim=-2, index=tar_idx.expand(-1, -1, C))
            # Combine back to the original shape
            # x_non_pad = torch.zeros(b, x_non_pad_N, C, device=x0.device, dtype=x0.dtype)
            # Scatter dst tokens
            x_non_pad.scatter_(dim=-2, index=b_idx.expand(b, -1, C), src=tar)
            # Scatter unmerged tokens
            x_non_pad.scatter_(dim=-2, index=torch.gather(a_idx.expand(b, -1, 1),
                        dim=1, index=unm_idx).expand(-1, -1, C), src=unm)
            # Scatter src tokens
            x_non_pad.scatter_(dim=-2, index=torch.gather(a_idx.expand(b, -1, 1),
                        dim=1, index=src_idx).expand(-1, -1, C), src=src)

            x_non_pad = rearrange(x_non_pad, '1 (b a) c -> b a c', a=x_non_pad_A)
            x0.scatter_(dim=1, index=non_pad_idx.expand(B, -1, C), src=x_non_pad)
            x0 = rearrange(x0, 'b (h w) c -> b c h w ', h=H)
        
        return x0

    def set_distance(self, B, H, W, radius, device):
        y, x = torch.meshgrid(torch.arange(H), torch.arange(W))
        coords = torch.stack((y, x), dim=-1).float().to(device)
        coords = rearrange(coords, 'h w c -> (h w) c')

        # Calculate the Euclidean distance between all pixels
        distances = torch.cdist(coords, coords)
        # radius = W // 30
        radius = 1 if radius == 0 else radius
        # print(f"[INFO]  W: {W} Radius: {radius} ")
        distances //= radius
        distances = torch.exp(-distances)
        # distances += torch.diag_embed(torch.ones(A)).to(metric.device)
        distances = repeat(distances, 'h a -> 1 (b h) a', b=B)
        self.distances[H] = distances
    
    def set_flow_correspondence(self, B, H, W, key_idx, flow_confid, flow):

        if len(flow) != B - 1:
                flow_confid = flow_confid[:key_idx] + flow_confid[key_idx+1:]
                flow = flow[:key_idx] + flow[key_idx+1:]

        flow_confid = torch.cat(flow_confid, dim=0) 
        flow = torch.cat(flow, dim=0) 
        flow_confid = rearrange(flow_confid, 'b h w -> 1 (b h w)')
        
        edge_idx = flow_confid.argsort(dim=-1, descending=True)[..., None]

        src_idx = edge_idx[..., :, :]  # Merged Tokens 

        A = H * W
        src_idx_tensor = src_idx[0, : ,0]
        f = src_idx_tensor // A
        id = src_idx_tensor % A
        x = id % W
        y = id // W

        # Stack the results into a 2D tensor
        src_fxy = torch.stack((f, x, y), dim=1)
        # import ipdb; ipdb.set_trace()
        grid = coords_grid(B-1, H, W).to(flow.device) + flow  # [F-1, 2, H, W]

        x = grid[src_fxy[:, 0], 0, src_fxy[:, 2], src_fxy[:, 1]].clamp(0, W-1).long()
        y = grid[src_fxy[:, 0], 1, src_fxy[:, 2], src_fxy[:, 1]].clamp(0, H-1).long()
        tar_xy = torch.stack((x, y), dim=1)
        tar_idx = y * W + x
        tar_idx = rearrange(tar_idx, ' d -> 1 d 1')

        self.flow_correspondence[H] = (src_idx, tar_idx)

    def set_merge(self, merge, unmerge):
        self.step_store["merge"] = merge
        self.step_store["unmerge"] = unmerge

    def set_warp(self, flows, masks, flow_confids=None):
        self.step_store["flows"] = flows
        self.step_store["occ_masks"] = masks
        if flow_confids is not None:
            self.step_store["flow_confids"] = flow_confids

    def set_warp2(self, flows, flow_confids):
        self.step_store["flows2"] = flows
        self.step_store["flow_confids2"] = flow_confids

    def set_pre_keyframe_lq(self, pre_keyframe_lq):
        self.step_store["pre_keyframe_lq"] = pre_keyframe_lq

    def __call__(self, context, is_cross: bool, place_in_unet: str):
        context = self.forward(context, is_cross, place_in_unet)
        return context

    def set_cur_frame_idx(self, frame_idx):
        self.cur_frame_idx = frame_idx

    def set_step(self, step):
        self.cur_step = step

    def set_total_step(self, total_step):
        self.total_step = total_step
        self.cur_index = 0

    def clear_store(self):
        del self.step_store
        torch.cuda.empty_cache()
        gc.collect()
        self.step_store = self.get_empty_store()

    def set_task(self, task, restore_step=1.0):
        self.init_store = False
        self.restore = False
        self.update = False
        self.cur_index = 0
        self.restore_step = restore_step
        self.updatex0 = False
        self.restorex0 = False
        if 'initfirst' in task:
            self.init_store = True
            self.clear_store()
        if 'updatestyle' in task:
            self.update = True
        if 'keepstyle' in task:
            self.restore = True
        if 'updatex0' in task: 
            self.updatex0 = True
        if 'keepx0' in task:
            self.restorex0 = True