DiffIR2VR / vidtome /merge.py
jimmycv07's picture
first commit
1de8821
import cv2
import time
import torch
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.patches import ConnectionPatch
from controller.controller import AttentionControl
from einops import repeat, rearrange
from typing import Tuple, Callable
from vidtome.patch import PCA_token
from utils.flow_utils import coords_grid
def do_nothing(x: torch.Tensor, mode: str = None):
return x
def mps_gather_workaround(input, dim, index):
if input.shape[-1] == 1:
return torch.gather(
input.unsqueeze(-1),
dim - 1 if dim < 0 else dim,
index.unsqueeze(-1)
).squeeze(-1)
else:
return torch.gather(input, dim, index)
def visualize_flow_correspondence(src_img: torch.Tensor, tar_img: torch.Tensor, flow: torch.Tensor, flow_confid: torch.Tensor,
ratio: float, H: int=64, out: str = "correspondence.png") -> Tuple[Callable, Callable, dict]:
if len(src_img.shape) == 4:
B, C, H, W = src_img.shape
src_img = rearrange(src_img, 'b c h w -> b (h w) c', h=H)
tar_img = rearrange(tar_img, 'b c h w -> b (h w) c', h=H)
else:
B, N, C = src_img.shape
W = N // H
src_PCA_token = PCA_token(src_img, token_h=H)
tar_PCA_token = PCA_token(tar_img, token_h=H)
# Compute pre-frame token number. N = unm_pre + tnum * F.
gather = mps_gather_workaround if src_img.device.type == "mps" else torch.gather
with torch.no_grad():
# Cosine similarity between src and dst tokens
a = src_img / src_img.norm(dim=-1, keepdim=True)
b = tar_img / tar_img.norm(dim=-1, keepdim=True)
scores = a @ b.transpose(-1, -2)
# Can't reduce more than the # tokens in src
r = min(a.shape[1], int(a.shape[1] * ratio))
print(f"[INFO] flow r {r} ")
# Find the most similar greedily
flow_confid = rearrange(flow_confid, 'b h w -> b (h w)')
edge_idx = flow_confid.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
src_xy = [(id.item() % W, id.item() // W) for id in src_idx[0]]
grid = coords_grid(B, H, W).to(flow.device) + flow # [B, 2, H, W]
tar_xy = [(grid[0, 0, y, x].clamp(0, W-1).item(), \
grid[0, 1, y, x].clamp(0, H-1).item()) for (x, y) in src_xy]
# tar_idx = torch.tensor([y * W + x for (x, y) in tar_xy]).to(src_idx.device)
fig, ax = plt.subplots(1, 2, figsize=(8, 3))
# Display the source and target images
ax[0].imshow(src_PCA_token, cmap='gray')
ax[1].imshow(tar_PCA_token, cmap='gray')
ax[0].axis('off')
ax[1].axis('off')
colors = cm.Greens(np.linspace(0.5, 1, len(src_xy)))
# Draw lines connecting corresponding points
for (x1, y1), (x2, y2), color in zip(src_xy, tar_xy, colors):
ax[0].plot(x1, y1, marker='o', color=color, markersize=0.5) # red dot in source image
ax[1].plot(x2, y2, marker='o', color=color, markersize=1) # red dot in target image
con = ConnectionPatch(xyA=(x2, y2), xyB=(x1, y1), coordsA="data", coordsB="data",
axesA=ax[1], axesB=ax[0], color=color, linewidth=0.2)
ax[1].add_artist(con)
# plt.tight_layout()
plt.savefig(out, bbox_inches="tight")
plt.close()
def visualize_correspondence_score(src_img: torch.Tensor, tar_img: torch.Tensor, score: torch.Tensor,
ratio: float, H: int=64, out: str = "correspondence_idx.png") -> Tuple[Callable, Callable, dict]:
if len(src_img.shape) == 4:
B, C, H, W = src_img.shape
src_img = rearrange(src_img, 'b c h w -> b (h w) c', h=H)
tar_img = rearrange(tar_img, 'b c h w -> b (h w) c', h=H)
else:
B, N, C = src_img.shape
W = N // H
src_PCA_token = PCA_token(src_img, token_h=H)
tar_PCA_token = PCA_token(tar_img, token_h=H)
with torch.no_grad():
# Can't reduce more than the # tokens in src
r = min(N, int(N * ratio))
node_max, node_idx = score.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
# src_idx = edge_idx[0, -r:, 0] # Merged Tokens
src_idx = edge_idx[0, :r, 0] # Merged Tokens
tar_idx = torch.gather(node_idx[0], dim=0, index=src_idx)
src_idx = src_idx[:r]
tar_idx = tar_idx[:r]
# x = src_idx % W
# y = src_idx // W
# src_xy
src_xy = [(id.item() % W, id.item() // W) for id in src_idx]
tar_xy = [(id.item() % W, id.item() // W) for id in tar_idx]
fig, ax = plt.subplots(1, 2, figsize=(8, 3))
# Display the source and target images
ax[0].imshow(src_PCA_token, cmap='gray')
ax[1].imshow(tar_PCA_token, cmap='gray')
colors = cm.cool(np.linspace(0, 1, len(src_xy)))
# Draw lines connecting corresponding points
for (x1, y1), (x2, y2), color in zip(src_xy, tar_xy, colors):
ax[0].plot(x1, y1, marker='o', color=color, markersize=1) # red dot in source image
ax[1].plot(x2, y2, marker='o', color=color, markersize=1) # red dot in target image
con = ConnectionPatch(xyA=(x2, y2), xyB=(x1, y1), coordsA="data", coordsB="data",
axesA=ax[1], axesB=ax[0], color=color, linewidth=0.2)
ax[1].add_artist(con)
# plt.tight_layout()
plt.savefig(out, bbox_inches="tight")
plt.close()
def visualize_cosine_correspondence(src_img: torch.Tensor, tar_img: torch.Tensor,
ratio: float, H: int=64, out: str = "correspondence.png",
flow: torch.Tensor=None, flow_confid: torch.Tensor=None,
controller: AttentionControl=None ) -> Tuple[Callable, Callable, dict]:
if len(src_img.shape) == 4:
B, C, H, W = src_img.shape
src_img = rearrange(src_img, 'b c h w -> b (h w) c', h=H)
tar_img = rearrange(tar_img, 'b c h w -> b (h w) c', h=H)
else:
B, N, C = src_img.shape
W = N // H
# import ipdb; ipdb.set_trace()
src_PCA_token = PCA_token(src_img, token_h=H)
tar_PCA_token = PCA_token(tar_img, token_h=H)
# Compute pre-frame token number. N = unm_pre + tnum * F.
gather = mps_gather_workaround if src_img.device.type == "mps" else torch.gather
with torch.no_grad():
# Cosine similarity between src and dst tokens
a = src_img / src_img.norm(dim=-1, keepdim=True)
b = tar_img / tar_img.norm(dim=-1, keepdim=True)
scores = a @ b.transpose(-1, -2)
# Can't reduce more than the # tokens in src
r = min(a.shape[1], int(a.shape[1] * ratio))
print(f"[INFO] cosine r {r} ")
# Find the most similar greedily
# import ipdb; ipdb.set_trace()
# scores *= controller.distances[H][:,:scores.shape[1]]
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., int(4*r):int(5*r), :] # Merged Tokens
# unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
# src_idx = edge_idx[..., :r, :] # Merged Tokens
tar_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
src_xy = [(id.item() % W, id.item() // W) for id in src_idx[0]]
tar_xy = [(id.item() % W, id.item() // W) for id in tar_idx[0]]
fig, ax = plt.subplots(1, 2, figsize=(8, 3))
# Display the source and target images
ax[0].imshow(src_PCA_token, cmap='spring')
ax[1].imshow(tar_PCA_token, cmap='spring')
# Hide the axis labels
ax[0].axis('off')
ax[1].axis('off')
# colors = cm.Reds(np.linspace(0.5, 1, len(src_xy)))
colors = cm.cool(np.linspace(0.5, 1, len(src_xy)))
# Draw lines connecting corresponding points
for (x1, y1), (x2, y2), color in zip(src_xy, tar_xy, colors):
# color = "orangered"
ax[0].plot(x1, y1, marker='o', color=color, markersize=0.5) # red dot in source image
ax[1].plot(x2, y2, marker='o', color=color, markersize=1) # red dot in target image
con = ConnectionPatch(xyA=(x2, y2), xyB=(x1, y1), coordsA="data", coordsB="data",
axesA=ax[1], axesB=ax[0], color=color, linewidth=0.2)
ax[1].add_artist(con)
# plt.tight_layout()
plt.savefig(out, bbox_inches="tight")
plt.close()
def visualize_correspondence(src_img: torch.Tensor, tar_img: torch.Tensor,
ratio: float, H: int=64, out: str = "correspondence.png",
flow: torch.Tensor=None, flow_confid: torch.Tensor=None,
controller: AttentionControl=None ) -> Tuple[Callable, Callable, dict]:
if len(src_img.shape) == 4:
B, C, H, W = src_img.shape
src_img = rearrange(src_img, 'b c h w -> b (h w) c', h=H)
tar_img = rearrange(tar_img, 'b c h w -> b (h w) c', h=H)
else:
B, N, C = src_img.shape
W = N // H
src_PCA_token = PCA_token(src_img, token_h=H, n=1)
tar_PCA_token = PCA_token(tar_img, token_h=H, n=1)
# import ipdb; ipdb.set_trace()
if abs(np.mean(src_PCA_token[:20, :20]) - np.mean(tar_PCA_token[:20, :20])) > 50:
if np.mean(src_PCA_token[:20, :20]) > np.mean(tar_PCA_token[:20, :20]):
src_PCA_token = 255 - src_PCA_token
else:
tar_PCA_token = 255 - tar_PCA_token
print(f"[INFO] src_PCA_token mean {np.mean(src_PCA_token[:20, :20])} tar_PCA_token mean {np.mean(tar_PCA_token[:20, :20])} ")
# Compute pre-frame token number. N = unm_pre + tnum * F.
gather = mps_gather_workaround if src_img.device.type == "mps" else torch.gather
with torch.no_grad():
# Cosine similarity between src and dst tokens
a = src_img / src_img.norm(dim=-1, keepdim=True)
b = tar_img / tar_img.norm(dim=-1, keepdim=True)
scores = a @ b.transpose(-1, -2)
# Can't reduce more than the # tokens in src
r = min(a.shape[1], int(a.shape[1] * ratio))
# Find the most similar greedily
# import ipdb; ipdb.set_trace()
print(f"[INFO] no distance weigthed ... ")
# scores *= controller.distances[H][:,:scores.shape[1]]
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
# unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
# src_idx = edge_idx[..., :r, :] # Merged Tokens
tar_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
src_xy = [(id.item() % W, id.item() // W) for id in src_idx[0]]
tar_xy = [(id.item() % W, id.item() // W) for id in tar_idx[0]]
# Find the most similar greedily
flow_confid = rearrange(flow_confid, 'b h w -> b (h w)')
edge_idx = flow_confid.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
flow_src_xy = [(id.item() % W, id.item() // W) for id in src_idx[0]]
# import ipdb; ipdb.set_trace()
grid = coords_grid(B, H, W).to(flow.device) + flow # [B, 2, H, W]
flow_tar_xy = [(grid[0, 0, y, x].clamp(0, W-1).item(), \
grid[0, 1, y, x].clamp(0, H-1).item()) for (x, y) in flow_src_xy]
fig, ax = plt.subplots(2, 2, figsize=(8, 4))
if len(controller.decoded_imgs):
step = out.split("/")[-1].split(".")[0]
_, h_, w_, _ = controller.decoded_imgs[0].shape
mul = h_ // H
decoded_img = controller.decoded_imgs[1]
decoded_img = decoded_img[0, :, :int(W * mul), :]
if step == "49":
decoded_img = cv2.imread("/project/DiffBVR_eval/DAVIS/BDx8_results/DiffBIR_ours/cows/00001.png")
decoded_img = cv2.resize(decoded_img, (W, H))
ax[0, 0].imshow(decoded_img, aspect='auto')
decoded_img = controller.decoded_imgs[2]
decoded_img = decoded_img[0, :, :int(W * mul), :]
if step == "49":
decoded_img = cv2.imread("/project/DiffBVR_eval/DAVIS/BDx8_results/DiffBIR_ours/cows/00002.png")
decoded_img = cv2.resize(decoded_img, (W, H))
ax[0, 1].imshow(decoded_img, aspect='auto')
else:
# Display the source and target images
ax[0, 0].imshow(src_PCA_token, cmap='ocean', aspect='auto')
ax[0, 1].imshow(tar_PCA_token, cmap='ocean', aspect='auto')
ax[0, 0].axis('off')
ax[0, 1].axis('off')
ax[1, 0].imshow(src_PCA_token, cmap='Blues', aspect='auto')
ax[1, 1].imshow(tar_PCA_token, cmap='Blues', aspect='auto')
# ax[1, 0].imshow(np.mean(src_PCA_token, -1), cmap='ocean')
# ax[1, 1].imshow(np.mean(tar_PCA_token, -1), cmap='ocean')
# Hide the axis labels
ax[1, 0].axis('off')
ax[1, 1].axis('off')
colors = cm.Greens(np.linspace(0.25, 0.75, len(flow_src_xy)))
# Draw lines connecting corresponding points
for (x1, y1), (x2, y2), color in zip(flow_src_xy, flow_tar_xy, colors):
# color = "mediumslateblue"
# ax[1, 0].plot(x1, y1, marker='o', color=color, markersize=1) # red dot in source image
ax[1, 1].plot(x2, y2, marker='o', color=color, markersize=1) # red dot in target image
con = ConnectionPatch(xyA=(x2, y2), xyB=(x1, y1), coordsA="data", coordsB="data",
axesA=ax[1, 1], axesB=ax[1, 0], color=color, linewidth=0.2)
ax[1, 1].add_artist(con)
# plt.tight_layout()
colors = cm.Reds(np.linspace(0.25, 0.75, len(src_xy)))
# Draw lines connecting corresponding points
for (x1, y1), (x2, y2), color in zip(src_xy, tar_xy, colors):
# color = "orangered"
# ax[1, 0].plot(x1, y1, marker='o', color=color, markersize=1) # red dot in source image
ax[1, 1].plot(x2, y2, marker='o', color=color, markersize=1) # red dot in target image
con = ConnectionPatch(xyA=(x2, y2), xyB=(x1, y1), coordsA="data", coordsB="data",
axesA=ax[1, 1], axesB=ax[1, 0], color=color, linewidth=0.2)
ax[1, 1].add_artist(con)
plt.subplots_adjust(wspace=0.05, hspace=0.1)
plt.savefig(out, bbox_inches="tight")
plt.close()
# For Local Token Merging
def bipartite_soft_matching_randframe(metric: torch.Tensor,
F: int, ratio: float, unm_pre: int, generator: torch.Generator=None,
target_stride: int = 4, align_batch: bool = False,
merge_mode: str = "replace", H: int=64,
flow_merge: bool=False,
controller: AttentionControl=None) -> Tuple[Callable, Callable, dict]:
"""
Partitions the multi-frame tokens into src and dst and merges ratio of src tokens from src to dst.
Dst tokens are partitioned by choosing one random frame.
Args:
- metric [B, N, C]: metric to use for similarity.
- F: frame number.
- ratio: ratio of src tokens to be removed (by merging).
- unm_pre: number of src tokens not merged at previous ToMe. Pre-sequence: [unm_pre|F_0|F_1|...]
- generator: random number generator
- target_stride: stride of target frame.
- align_batch: whether to align similarity matching maps of samples in the batch. True when using PnP.
- merge_mode: how to merge tokens. "mean": tokens -> Mean(src_token, dst_token); "replace": tokens -> dst_token.
Returns:
Merge and unmerge operation according to the matching result. Return a dict including other values.
"""
B, N, _ = metric.shape
A = N // F
W = A // H
# Compute pre-frame token number. N = unm_pre + tnum * F.
tnum = (N - unm_pre) // F
if ratio <= 0:
return do_nothing, do_nothing, {"unm_num": tnum}
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
with torch.no_grad():
# Prepare idx buffer. Ignore previous unmerged tokens.
idx_buffer = torch.arange(
N - unm_pre, device=metric.device, dtype=torch.int64)
# Select the random target frame.
target_stride = min(target_stride, F)
# import ipdb; ipdb.set_trace()
if controller is None:
randf = torch.randint(0, target_stride, torch.Size(
[1]), generator=generator, device=generator.device)
else:
randf = torch.tensor(target_stride // 2).to(metric.device)
# print(f"[INFO] randf: {randf} ... ")
dst_select = ((torch.div(idx_buffer, tnum, rounding_mode='floor')) %
target_stride == randf).to(torch.bool)
# a_idx: src index. b_idx: dst index
a_idx = idx_buffer[None, ~dst_select, None] + unm_pre
b_idx = idx_buffer[None, dst_select, None] + unm_pre
# import ipdb; ipdb.set_trace()
# Add unmerged tokens to dst.
unm_buffer = torch.arange(unm_pre, device=metric.device, dtype=torch.int64)[
None, :, None]
b_idx = torch.cat([b_idx, unm_buffer], dim=1)
# We're finished with these
del idx_buffer, unm_buffer
num_dst = b_idx.shape[1]
def split(x):
# Split src, dst tokens
b, n, c = x.shape
src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
# print(f"[INFO] {x.shape} {num_dst}")
return src, dst
# if flow is not None:
# start = time.time()
# if len(flow) != F-1:
# mid = F // 2
# flow_confid = flow_confid[:mid] + flow_confid[mid+1:]
# flow = flow[:mid] + flow[mid+1:]
# flow_confid = torch.cat(flow_confid, dim=0)
# flow = torch.cat(flow, dim=0)
# flow_confid = rearrange(flow_confid, 'b h w -> 1 (b h w)')
# print(f"[INFO] flow time {time.time() - start}")
# Cosine similarity between src and dst tokens
metric = metric / metric.norm(dim=-1, keepdim=True)
# import ipdb; ipdb.set_trace()
a, b = split(metric)
scores = a @ b.transpose(-1, -2)
# Can't reduce more than the # tokens in src
r = min(a.shape[1], int(a.shape[1] * ratio))
if align_batch:
# Cat scores of all samples in the batch. When using PnP, samples are (src, neg, pos).
# Find the most similar greedily among all samples.
scores = torch.cat([*scores], dim=-1)
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None],
dim=-2, index=src_idx) % num_dst # Map index to (0, num_dst - 1)
# Use the same matching result for all samples
unm_idx = unm_idx.expand(B, -1, -1)
src_idx = src_idx.expand(B, -1, -1)
dst_idx = dst_idx.expand(B, -1, -1)
else:
if flow_merge:
# print(f"[INFO] flow merge ... ")
# start = time.time()
# edge_idx = flow_confid.argsort(dim=-1, descending=True)[..., None]
# unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
# src_idx = edge_idx[..., :r, :] # Merged Tokens
# src_idx_tensor = src_idx[0, : ,0]
# f = src_idx_tensor // A
# id = src_idx_tensor % A
# x = id % W
# y = id // W
# # Stack the results into a 2D tensor
# src_fxy = torch.stack((f, x, y), dim=1)
# # import ipdb; ipdb.set_trace()
# grid = coords_grid(F-1, H, W).to(flow.device) + flow # [F-1, 2, H, W]
# x = grid[src_fxy[:, 0], 0, src_fxy[:, 2], src_fxy[:, 1]].clamp(0, W-1).long()
# y = grid[src_fxy[:, 0], 1, src_fxy[:, 2], src_fxy[:, 1]].clamp(0, H-1).long()
# tar_xy = torch.stack((x, y), dim=1)
# tar_idx = y * W + x
# tar_idx = rearrange(tar_idx, ' d -> 1 d 1')
# print(f"[INFO] {src_idx[0, 10, 0]} {tar_idx[0, 10, 0]}")
unm_idx = controller.flow_correspondence[H][0][:, r:, :]
src_idx = controller.flow_correspondence[H][0][:, :r, :]
tar_idx = controller.flow_correspondence[H][1][:, :r, :]
# score[src_idx[i], tar_idx[i]] = flow_confid[src_idx[i]]
# scores[:, src_idx[0, :, 0], tar_idx[0, :, 0]] = flow_confid[0, src_idx[0, :, 0]]
# import ipdb; ipdb.set_trace()
else:
''' distacne weighted '''
# # if H == 64:
# # Create a tensor that represents the coordinates of each pixel
# start = time.time()
# y, x = torch.meshgrid(torch.arange(H), torch.arange(W))
# coords = torch.stack((y, x), dim=-1).float().to(metric.device)
# coords = rearrange(coords, 'h w c -> (h w) c')
# # Calculate the Euclidean distance between all pixels
# distances = torch.cdist(coords, coords)
# radius = W // 30
# radius = 1 if radius == 0 else radius
# # print(f"[INFO] W: {W} Radius: {radius} ")
# distances //= radius
# distances = torch.exp(-distances)
# # distances += torch.diag_embed(torch.ones(A)).to(metric.device)
# distances = repeat(distances, 'h a -> 1 (b h) a', b=F-1)
# print(f"[INFO] {W} {torch.mean(distances)} {torch.std(distances)}")
# node_max, node_idx = scores.max(dim=-1)
# scores *= distances
# print(f"[INFO] distance not weighted ... ")
if controller is not None:
if H not in controller.distances:
controller.set_distance(F-1, H, W, W//30, metric.device)
print(f"[INFO] distance weighted ... ")
# print(f"[INFO] controller distance time {time.time() - start}")
scores *= controller.distances[H]
# Find the most similar greedily
''' node_idx: src_idx to tar_idx '''
node_max, node_idx = scores.max(dim=-1)
# src_idx_tensor = torch.arange(node_max.shape[1], device=metric.device, dtype=torch.int64)
# id = src_idx_tensor % A
# x = id % W
# y = id // W
# src_xy = torch.stack((x, y), dim=1)
# tar_idx_tensor = node_idx[0, :]
# x = tar_idx_tensor % W
# y = tar_idx_tensor // W
# tar_xy = torch.stack((x, y), dim=1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
''' idx in all src tokens '''
src_idx = edge_idx[..., :r, :] # Merged Tokens
tar_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
# correspond_dis = gather(distance[None, ..., None], dim=-2, index=src_idx)
# import ipdb; ipdb.set_trace()
# import ipdb; ipdb.set_trace()
# src_idx_tensor = src_idx[0, : ,0]
# id = src_idx_tensor % A
# x = id % W
# y = id // W
# src_xy = torch.stack((x, y), dim=1)
# tar_idx_tensor = tar_idx[0, : ,0]
# x = tar_idx_tensor % W
# y = tar_idx_tensor // W
# tar_xy = torch.stack((x, y), dim=1)
# cosine_delta = torch.sum(torch.norm((src_xy - tar_xy).float(), dim=-1))
# import ipdb; ipdb.set_trace()
# print("&&&")
# if flow is not None:
# print(f"[INFO] Flow Delta: {flow_delta.item()} Cosine Delta: {cosine_delta.item()}")
# else:
# print(f"Cosine Delta: {cosine_delta.item()}")
def merge(x: torch.Tensor, mode=None) -> torch.Tensor:
# Merge tokens according to matching result.
src, dst = split(x)
n, t1, c = src.shape
u_idx, s_idx, t_idx = unm_idx, src_idx, tar_idx
# print(f"[INFO] {s_idx[0, 10, 0]} {t_idx[0, 10, 0]}")
unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
mode = mode if mode is not None else merge_mode
if mode != "replace":
src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
# In other mode such as mean, combine matched src and dst tokens.
dst = dst.scatter_reduce(-2, t_idx.expand(-1, -1, c),
src, reduce=mode, include_self=True)
# In replace mode, just cat unmerged tokens and dst tokens. Ignore src tokens.
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor, **kwarg) -> torch.Tensor:
# Unmerge tokens to original size according to matching result.
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
b, _, c = unm.shape
u_idx, s_idx, t_idx = unm_idx, src_idx, tar_idx
# Restored src tokens take value from dst tokens
src = gather(dst, dim=-2, index=t_idx.expand(-1, -1, c))
# Combine back to the original shape
out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
# Scatter dst tokens
out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
# Scatter unmerged tokens
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
dim=1, index=u_idx).expand(-1, -1, c), src=unm)
# Scatter src tokens
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
dim=1, index=s_idx).expand(-1, -1, c), src=src)
return out
# Return number of tokens not merged.
ret_dict = {"scores": scores, "unm_num": unm_idx.shape[1] if unm_idx.shape[1] is not None else 0}
return merge, unmerge, ret_dict
def bipartite_soft_matching_random2d_hier(metric: torch.Tensor, frame_num: int, ratio: float, unm_pre: int, generator: torch.Generator, target_stride: int = 4, adhere_src: bool = False, merge_mode: str = "replace", scores = None, coord = None, rec_field = 2) -> Tuple[Callable, Callable]:
"""
Partitions the tokens into src and dst and merges r tokens from src to dst.
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
Args:
- metric [B, N, C]: metric to use for similarity
- w: image width in tokens
- h: image height in tokens
- sx: stride in the x dimension for dst, must divide w
- sy: stride in the y dimension for dst, must divide h
- r: number of tokens to remove (by merging)
- no_rand: if true, disable randomness (use top left corner only)
- rand_seed: if no_rand is false, and if not None, sets random seed.
"""
B, N, _ = metric.shape
F = frame_num
nf = (N - unm_pre) // F
if ratio <= 0:
return do_nothing, do_nothing
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
with torch.no_grad():
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
idx_buffer = torch.arange(N - unm_pre, device=metric.device, dtype=torch.int64)
# randn = torch.randint(0, F, torch.Size([nf])).to(idx_buffer) * nf
# dst_indexes = torch.arange(nf, device=metric.device, dtype=torch.int64) + randn
# dst_select = torch.zeros_like(idx_buffer).to(torch.bool)
# dst_select[dst_indexes] = 1
max_f = min(target_stride, F)
randn = torch.randint(0, max_f, torch.Size([1]), generator=generator, device = generator.device)
# randn = 0
dst_select = ((torch.div(idx_buffer, nf, rounding_mode='floor')) % max_f == randn).to(torch.bool)
# dst_select = ((idx_buffer // nf) == 0).to(torch.bool)
a_idx = idx_buffer[None, ~dst_select, None] + unm_pre
b_idx = idx_buffer[None, dst_select, None] + unm_pre
unm_buffer = torch.arange(unm_pre, device=metric.device, dtype=torch.int64)[None,:,None]
b_idx = torch.cat([b_idx, unm_buffer], dim = 1)
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
# We're finished with these
del idx_buffer, unm_buffer
num_dst = b_idx.shape[1]
def split(x):
b, n, c = x.shape
src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
return src, dst
def split_coord(coord):
b, n, c = coord.shape
src = gather(coord, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(coord, dim=1, index=b_idx.expand(b, num_dst, c))
return src, dst
# Cosine similarity between A and B
metric = metric / metric.norm(dim=-1, keepdim=True)
a, b = split(metric)
if coord is not None:
src_coord, dst_coord = split_coord(coord)
mask = torch.norm(src_coord[:,:,None,:] - dst_coord[:,None,:,:], dim=-1) > rec_field
scores = a @ b.transpose(-1, -2)
if coord is not None:
scores[mask] = 0
# Can't reduce more than the # tokens in src
r = int(a.shape[1] * ratio)
r = min(a.shape[1], r)
if adhere_src:
# scores = torch.sum(scores, dim=0)
scores = torch.cat([*scores], dim = -1)
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst
unm_idx = unm_idx.expand(B, -1, -1)
src_idx = src_idx.expand(B, -1, -1)
dst_idx = dst_idx.expand(B, -1, -1)
else:
# scores = torch.cat([*scores][1:], dim = -1)
# node_max, node_idx = scores.max(dim=-1)
# edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
# unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
# src_idx = edge_idx[..., :r, :] # Merged Tokens
# dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst
# unm_idx = unm_idx.expand(B, -1, -1)
# src_idx = src_idx.expand(B, -1, -1)
# dst_idx = dst_idx.expand(B, -1, -1)
# Find the most similar greedily
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
# if adhere_src:
# unm_idx[:,...] = unm_idx[0:1]
# src_idx[:,...] = src_idx[0:1]
# dst_idx[:,...] = dst_idx[0:1]
def merge(x: torch.Tensor, mode=None, b_select = None, **kwarg) -> torch.Tensor:
src, dst = split(x)
n, t1, c = src.shape
if b_select is not None:
if not isinstance(b_select, list):
b_select = [b_select]
u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
else:
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
mode = mode if mode is not None else merge_mode
if mode != "replace":
dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c), src, reduce=mode, include_self=True)
# dst = dst.scatter(-2, dst_idx.expand(n, r, c), src, reduce='add')
# dst_cnt = torch.ones_like(dst)
# src_ones = torch.ones_like(src)
# dst_cnt = dst_cnt.scatter(-2, dst_idx.expand(n, r, c), src_ones, reduce='add')
# dst = dst / dst_cnt
# dst2 = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode, include_self=True)
# assert torch.allclose(dst1, dst2)
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor, b_select = None, unm_modi = None, **kwarg) -> torch.Tensor:
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
b, _, c = unm.shape
if b_select is not None:
if not isinstance(b_select, list):
b_select = [b_select]
u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
else:
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
if unm_modi is not None:
if unm_modi == "zero":
unm = torch.zeros_like(unm)
src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))
# Combine back to the original shape
out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=u_idx).expand(-1, -1, c), src=unm)
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=s_idx).expand(-1, -1, c), src=src)
return out
ret_dict = {"unm_num": unm_idx.shape[1]}
return merge, unmerge, ret_dict
# For Global Token Merging.
def bipartite_soft_matching_2s( metric: torch.Tensor,
src_len: int, ratio: float, align_batch: bool,
merge_mode: str = "replace", unmerge_chunk: int = 0) -> Tuple[Callable, Callable, dict]:
"""
Partitions the tokens into src and dst and merges ratio of src tokens from src to dst.
Src tokens are partitioned as first src_len tokens. Others are dst tokens.
Args:
- metric [B, N, C]: metric to use for similarity.
- src_len: src token length. [ src | dst ]: [ src_len | N - src_len ]
- ratio: ratio of src tokens to be removed (by merging).
- unm_pre: number of src tokens not merged at previous ToMe. Pre-sequence: [unm_pre|F_0|F_1|...]
- align_batch: whether to align similarity matching maps of samples in the batch. True when using PnP.
- merge_mode: how to merge tokens. "mean": tokens -> Mean(src_token, dst_token); "replace": tokens -> dst_token.
- unmerge_chunk: return which partition in unmerge. 0 for src and 1 for dst.
Returns:
Merge and unmerge operation according to the matching result. Return a dict including other values.
"""
B, N, _ = metric.shape
if ratio <= 0:
return do_nothing, do_nothing
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
with torch.no_grad():
idx_buffer = torch.arange(N, device=metric.device, dtype=torch.int64)
# [ src | dst ]: [ src_len | N - src_len ]
a_idx = idx_buffer[None, :src_len, None]
b_idx = idx_buffer[None, src_len:, None]
del idx_buffer
num_dst = b_idx.shape[1]
# import ipdb; ipdb.set_trace()
def split(x):
# Split src, dst tokens
b, n, c = x.shape
# print(f"[INFO] {num_dst} {x.shape} ")
src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
return src, dst
# Cosine similarity between src and dst tokens
metric = metric / metric.norm(dim=-1, keepdim=True)
a, b = split(metric)
scores = a @ b.transpose(-1, -2)
# Can't reduce more than the # tokens in src
r = min(a.shape[1], int(a.shape[1] * ratio))
if align_batch:
# Cat scores of all samples in the batch. When using PnP, samples are (src, neg, pos).
# Find the most similar greedily among all samples.
scores = torch.cat([*scores], dim=-1)
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None],
dim=-2, index=src_idx) % num_dst # Map index to (0, num_dst - 1)
# Use the same matching result for all samples
unm_idx = unm_idx.expand(B, -1, -1)
src_idx = src_idx.expand(B, -1, -1)
dst_idx = dst_idx.expand(B, -1, -1)
else:
# Find the most similar greedily
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
def merge(x: torch.Tensor, mode=None) -> torch.Tensor:
# Merge tokens according to matching result.
# import ipdb; ipdb.set_trace()
src, dst = split(x)
n, t1, c = src.shape
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
mode = mode if mode is not None else merge_mode
if mode != "replace":
src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
# In other mode such as mean, combine matched src and dst tokens.
dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c),
src, reduce=mode, include_self=True)
# In replace mode, just cat unmerged tokens and dst tokens. Discard src tokens.
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor, **kwarg) -> torch.Tensor:
# Unmerge tokens to original size according to matching result.
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
b, _, c = unm.shape
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
# Restored src tokens take value from dst tokens
src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))
# Combine back to the original shape
out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
# Scatter dst tokens
out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
# Scatter unmerged tokens
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
dim=1, index=u_idx).expand(-1, -1, c), src=unm)
# Scatter src tokens
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
dim=1, index=s_idx).expand(-1, -1, c), src=src)
out = out[:, :src_len, :] if unmerge_chunk == 0 else out[:, src_len:, :]
return out
ret_dict = {"unm_num": unm_idx.shape[1]}
return merge, unmerge, ret_dict
# Original ToMe
def bipartite_soft_matching_random2d(metric: torch.Tensor,
w: int, h: int, sx: int, sy: int, r: int,
no_rand: bool = False,
generator: torch.Generator = None) -> Tuple[Callable, Callable]:
"""
Partitions the tokens into src and dst and merges r tokens from src to dst.
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
Args:
- metric [B, N, C]: metric to use for similarity
- w: image width in tokens
- h: image height in tokens
- sx: stride in the x dimension for dst, must divide w
- sy: stride in the y dimension for dst, must divide h
- r: number of tokens to remove (by merging)
- no_rand: if true, disable randomness (use top left corner only)
- rand_seed: if no_rand is false, and if not None, sets random seed.
"""
B, N, _ = metric.shape
if r <= 0:
return do_nothing, do_nothing
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
with torch.no_grad():
hsy, wsx = h // sy, w // sx
# For each sy by sx kernel, randomly assign one token to be dst and the rest src
if no_rand:
rand_idx = torch.zeros(
hsy, wsx, 1, device=metric.device, dtype=torch.int64)
else:
rand_idx = torch.randint(
sy*sx, size=(hsy, wsx, 1), device=generator.device, generator=generator).to(metric.device)
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
idx_buffer_view = torch.zeros(
hsy, wsx, sy*sx, device=metric.device, dtype=torch.int64)
idx_buffer_view.scatter_(
dim=2, index=rand_idx, src=-torch.ones_like(rand_idx, dtype=rand_idx.dtype))
idx_buffer_view = idx_buffer_view.view(
hsy, wsx, sy, sx).transpose(1, 2).reshape(hsy * sy, wsx * sx)
# Image is not divisible by sx or sy so we need to move it into a new buffer
if (hsy * sy) < h or (wsx * sx) < w:
idx_buffer = torch.zeros(
h, w, device=metric.device, dtype=torch.int64)
idx_buffer[:(hsy * sy), :(wsx * sx)] = idx_buffer_view
else:
idx_buffer = idx_buffer_view
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
rand_idx = idx_buffer.reshape(1, -1, 1).argsort(dim=1)
# We're finished with these
del idx_buffer, idx_buffer_view
# rand_idx is currently dst|src, so split them
num_dst = hsy * wsx
a_idx = rand_idx[:, num_dst:, :] # src
b_idx = rand_idx[:, :num_dst, :] # dst
def split(x):
C = x.shape[-1]
src = gather(x, dim=1, index=a_idx.expand(B, N - num_dst, C))
dst = gather(x, dim=1, index=b_idx.expand(B, num_dst, C))
return src, dst
# Cosine similarity between A and B
metric = metric / metric.norm(dim=-1, keepdim=True)
a, b = split(metric)
scores = a @ b.transpose(-1, -2)
# Can't reduce more than the # tokens in src
r = min(a.shape[1], r)
# Find the most similar greedily
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
def merge(x: torch.Tensor, mode="mean") -> torch.Tensor:
src, dst = split(x)
n, t1, c = src.shape
unm = gather(src, dim=-2, index=unm_idx.expand(n, t1 - r, c))
src = gather(src, dim=-2, index=src_idx.expand(n, r, c))
dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode)
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor) -> torch.Tensor:
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
_, _, c = unm.shape
src = gather(dst, dim=-2, index=dst_idx.expand(B, r, c))
# Combine back to the original shape
out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype)
out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst)
out.scatter_(dim=-2, index=gather(a_idx.expand(B,
a_idx.shape[1], 1), dim=1, index=unm_idx).expand(B, unm_len, c), src=unm)
out.scatter_(dim=-2, index=gather(a_idx.expand(B,
a_idx.shape[1], 1), dim=1, index=src_idx).expand(B, r, c), src=src)
return out
return merge, unmerge
def bipartite_soft_matching_2f(metric: torch.Tensor, src_len: int, ratio: float, adhere_src: bool, merge_mode: str = "replace", scores = None, coord = None, rec_field = 2, unmerge_chunk = 0) -> Tuple[Callable, Callable]:
"""
Partitions the tokens into src and dst and merges r tokens from src to dst.
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
Args:
- metric [B, N, C]: metric to use for similarity
- w: image width in tokens
- h: image height in tokens
- sx: stride in the x dimension for dst, must divide w
- sy: stride in the y dimension for dst, must divide h
- r: number of tokens to remove (by merging)
- no_rand: if true, disable randomness (use top left corner only)
- rand_seed: if no_rand is false, and if not None, sets random seed.
"""
B, N, _ = metric.shape
if ratio <= 0:
return do_nothing, do_nothing
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
with torch.no_grad():
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
idx_buffer = torch.arange(N, device=metric.device, dtype=torch.int64)
# randn = torch.randint(0, F, torch.Size([nf])).to(idx_buffer) * nf
# dst_indexes = torch.arange(nf, device=metric.device, dtype=torch.int64) + randn
# dst_select = torch.zeros_like(idx_buffer).to(torch.bool)
# dst_select[dst_indexes] = 1
# randn = 0
# dst_select = ((idx_buffer // nf) == 0).to(torch.bool)
a_idx = idx_buffer[None, :src_len, None]
b_idx = idx_buffer[None, src_len:, None]
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
# We're finished with these
del idx_buffer
num_dst = b_idx.shape[1]
def split(x):
b, n, c = x.shape
src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
return src, dst
def split_coord(coord):
b, n, c = coord.shape
src = gather(coord, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(coord, dim=1, index=b_idx.expand(b, num_dst, c))
return src, dst
# Cosine similarity between A and B
metric = metric / metric.norm(dim=-1, keepdim=True)
a, b = split(metric)
if coord is not None:
src_coord, dst_coord = split_coord(coord)
mask = torch.norm(src_coord[:,:,None,:] - dst_coord[:,None,:,:], dim=-1) > rec_field
scores = a @ b.transpose(-1, -2)
if coord is not None:
scores[mask] = 0
# Can't reduce more than the # tokens in src
r = int(a.shape[1] * ratio)
r = min(a.shape[1], r)
if adhere_src:
scores = torch.cat([*scores], dim = -1)
# scores = torch.sum(scores, dim=0)
node_max, node_idx = scores.max(dim=-1)
# nscores = torch.cat([*scores], dim = -2)
# rev_node_max, rev_node_idx = nscores.max(dim = -2)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst
unm_idx = unm_idx.expand(B, -1, -1)
src_idx = src_idx.expand(B, -1, -1)
dst_idx = dst_idx.expand(B, -1, -1)
else:
# scores = torch.cat([*scores][1:], dim = -1)
# node_max, node_idx = scores.max(dim=-1)
# edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
# unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
# src_idx = edge_idx[..., :r, :] # Merged Tokens
# dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst
# unm_idx = unm_idx.expand(B, -1, -1)
# src_idx = src_idx.expand(B, -1, -1)
# dst_idx = dst_idx.expand(B, -1, -1)
# Find the most similar greedily
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
# if adhere_src:
# unm_idx[:,...] = unm_idx[0:1]
# src_idx[:,...] = src_idx[0:1]
# dst_idx[:,...] = dst_idx[0:1]
def merge(x: torch.Tensor, mode=None, b_select = None) -> torch.Tensor:
src, dst = split(x)
n, t1, c = src.shape
if b_select is not None:
if not isinstance(b_select, list):
b_select = [b_select]
u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
else:
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
# src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
mode = mode if mode is not None else merge_mode
if mode != "replace":
dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c), src, reduce=mode, include_self=True)
# dst = dst.scatter(-2, dst_idx.expand(n, r, c), src, reduce='add')
# dst_cnt = torch.ones_like(dst)
# src_ones = torch.ones_like(src)
# dst_cnt = dst_cnt.scatter(-2, dst_idx.expand(n, r, c), src_ones, reduce='add')
# dst = dst / dst_cnt
# dst2 = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode, include_self=True)
# assert torch.allclose(dst1, dst2)
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor, b_select = None, unm_modi = None) -> torch.Tensor:
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
b, _, c = unm.shape
if b_select is not None:
if not isinstance(b_select, list):
b_select = [b_select]
u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
else:
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
if unm_modi is not None:
if unm_modi == "zero":
unm = torch.zeros_like(unm)
src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))
# Combine back to the original shape
out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=u_idx).expand(-1, -1, c), src=unm)
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=s_idx).expand(-1, -1, c), src=src)
if unmerge_chunk == 0:
out = out[:,:src_len,:]
else:
out = out[:,src_len:,:]
return out
ret_dict = {"unm_num": unm_idx.shape[1]}
return merge, unmerge, ret_dict