Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import cv2 | |
from typing import overload, Generator, Dict | |
from argparse import Namespace | |
import numpy as np | |
import torch | |
import imageio | |
from PIL import Image | |
from omegaconf import OmegaConf | |
from accelerate.utils import set_seed | |
from model.cldm import ControlLDM | |
from model.gaussian_diffusion import Diffusion | |
from model.bsrnet import RRDBNet | |
from model.scunet import SCUNet | |
from model.swinir import SwinIR | |
from utils.common import instantiate_from_config, load_file_from_url, count_vram_usage | |
from utils.face_restoration_helper import FaceRestoreHelper | |
from utils.helpers import ( | |
Pipeline, | |
BSRNetPipeline, SwinIRPipeline, SCUNetPipeline, | |
batch_bicubic_resize, | |
bicubic_resize, | |
save_video | |
) | |
from utils.cond_fn import MSEGuidance, WeightedMSEGuidance | |
from GMFlow.gmflow.gmflow import GMFlow | |
from controller.controller import AttentionControl | |
MODELS = { | |
### stage_1 model weights | |
"bsrnet": "https://github.com/cszn/KAIR/releases/download/v1.0/BSRNet.pth", | |
# the following checkpoint is up-to-date, but we use the old version in our paper | |
# "swinir_face": "https://github.com/zsyOAOA/DifFace/releases/download/V1.0/General_Face_ffhq512.pth", | |
"swinir_face": "https://huggingface.co/lxq007/DiffBIR/resolve/main/face_swinir_v1.ckpt", | |
"scunet_psnr": "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth", | |
"swinir_general": "https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt", | |
### stage_2 model weights | |
"sd_v21": "https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt", | |
"v1_face": "https://huggingface.co/lxq007/DiffBIR-v2/resolve/main/v1_face.pth", | |
"v1_general": "https://huggingface.co/lxq007/DiffBIR-v2/resolve/main/v1_general.pth", | |
"v2": "https://huggingface.co/lxq007/DiffBIR-v2/resolve/main/v2.pth" | |
} | |
def load_model_from_url(url: str) -> Dict[str, torch.Tensor]: | |
sd_path = load_file_from_url(url, model_dir="weights") | |
sd = torch.load(sd_path, map_location="cpu") | |
if "state_dict" in sd: | |
sd = sd["state_dict"] | |
if list(sd.keys())[0].startswith("module"): | |
sd = {k[len("module."):]: v for k, v in sd.items()} | |
return sd | |
class InferenceLoop: | |
def __init__(self, args: Namespace) -> "InferenceLoop": | |
self.args = args | |
self.loop_ctx = {} | |
self.pipeline: Pipeline = None | |
self.init_stage1_model() | |
self.init_stage2_model() | |
self.init_cond_fn() | |
self.init_pipeline() | |
def init_stage1_model(self) -> None: | |
... | |
def init_stage2_model(self) -> None: | |
### load uent, vae, clip | |
# self.cldm: ControlLDM = instantiate_from_config(OmegaConf.load("configs/inference/my_cldm.yaml")) | |
config = OmegaConf.load(self.args.config) | |
if self.args.warp_period is not None: | |
config.params.latent_warp_cfg.warp_period = self.args.warp_period | |
if self.args.merge_period is not None: | |
config.params.latent_warp_cfg.merge_period = self.args.merge_period | |
if self.args.ToMe_period is not None: | |
config.params.VidToMe_cfg.ToMe_period = self.args.ToMe_period | |
if self.args.merge_ratio is not None: | |
config.params.VidToMe_cfg.merge_ratio = self.args.merge_ratio | |
# import ipdb; ipdb.set_trace() | |
self.cldm: ControlLDM = instantiate_from_config(config) | |
sd = load_model_from_url(MODELS["sd_v21"]) | |
unused = self.cldm.load_pretrained_sd(sd) | |
print(f"strictly load pretrained sd_v2.1, unused weights: {unused}") | |
### load controlnet | |
control_sd = load_model_from_url(MODELS["v2"]) | |
self.cldm.load_controlnet_from_ckpt(control_sd) | |
print(f"strictly load controlnet weight") | |
self.cldm.eval().to(self.args.device) | |
### load diffusion | |
self.diffusion: Diffusion = instantiate_from_config(OmegaConf.load("configs/inference/diffusion.yaml")) | |
self.diffusion.to(self.args.device) | |
def init_cond_fn(self) -> None: | |
if not self.args.guidance: | |
self.cond_fn = None | |
return | |
if self.args.g_loss == "mse": | |
cond_fn_cls = MSEGuidance | |
elif self.args.g_loss == "w_mse": | |
cond_fn_cls = WeightedMSEGuidance | |
else: | |
raise ValueError(self.args.g_loss) | |
self.cond_fn = cond_fn_cls( | |
scale=self.args.g_scale, t_start=self.args.g_start, t_stop=self.args.g_stop, | |
space=self.args.g_space, repeat=self.args.g_repeat | |
) | |
def init_pipeline(self) -> None: | |
... | |
def setup(self) -> None: | |
pass | |
# self.output_dir = self.args.output | |
# os.makedirs(self.output_dir, exist_ok=True) | |
def lq_loader(self) -> Generator[np.ndarray, None, None]: | |
img_exts = [".png", ".jpg", ".jpeg"] | |
if os.path.isdir(self.args.input): | |
file_names = sorted([ | |
file_name for file_name in os.listdir(self.args.input) if os.path.splitext(file_name)[-1] in img_exts | |
]) | |
file_paths = [os.path.join(self.args.input, file_name) for file_name in file_names] | |
else: | |
assert os.path.splitext(self.args.input)[-1] in img_exts | |
file_paths = [self.args.input] | |
def _loader() -> Generator[np.ndarray, None, None]: | |
for file_path in file_paths: | |
### load lq | |
lq = np.array(Image.open(file_path).convert("RGB")) | |
print(f"load lq: {file_path}") | |
### set context for saving results | |
self.loop_ctx["file_stem"] = os.path.splitext(os.path.basename(file_path))[0] | |
for i in range(self.args.n_samples): | |
self.loop_ctx["repeat_idx"] = i | |
yield lq | |
return _loader | |
def batch_lq_loader(self) -> Generator[np.ndarray, None, None]: | |
img_exts = [".png", ".jpg", ".jpeg"] | |
if os.path.isdir(self.args.input): | |
file_names = sorted([ | |
file_name for file_name in os.listdir(self.args.input) if os.path.splitext(file_name)[-1] in img_exts | |
], key=lambda x: int(x.split('.')[0])) | |
# file_names=file_names[30:] | |
# sorted([filename for filename in os.listdir(img_folder) if filename.endswith(('.png', '.jpg'))], key=lambda x: int(x.split('.')[0])) | |
file_paths = [os.path.join(self.args.input, file_name) for file_name in file_names] | |
file_paths = file_paths[:self.args.n_frames] | |
else: | |
assert os.path.splitext(self.args.input)[-1] in img_exts | |
file_paths = [self.args.input] | |
def _loader() -> Generator[np.ndarray, None, None]: | |
for j in range(0, len(file_paths), self.args.batch_size): | |
lqs, self.loop_ctx["file_stem"] = [], [] | |
batch = self.args.batch_size if len(file_paths) - (j + self.args.batch_size) > 2 else len(file_paths) - j | |
if batch != self.args.batch_size: | |
self.args.batch_size = batch | |
# sampler.model.controller.distances.clear() | |
if self.pipeline.cldm.controller is not None and self.pipeline.cldm.controller.distances is not None: | |
self.pipeline.cldm.controller.distances.clear() | |
for file_path in file_paths[j:min(len(file_paths), j+batch)]: | |
### load lq | |
print(f"[INFO] load lq: {file_path}") | |
lq = np.array(Image.open(file_path).convert("RGB")) | |
lqs.append(lq) | |
### set context for saving results | |
self.loop_ctx["file_stem"].append(os.path.splitext(os.path.basename(file_path))[0]) | |
# import ipdb; ipdb.set_trace() | |
self.args.final_size = (int(lqs[0].shape[0] * self.args.upscale), int(lqs[0].shape[1] * self.args.upscale)) | |
for i in range(self.args.n_samples): | |
self.loop_ctx["repeat_idx"] = i | |
yield np.array(lqs) | |
if j + batch == len(file_paths): | |
break | |
return _loader | |
def after_load_lq(self, lq: np.ndarray) -> np.ndarray: | |
return lq | |
def run(self) -> None: | |
self.setup() | |
# We don't support batch processing since input images may have different size | |
loader = self.batch_lq_loader() | |
''' flow model ''' | |
flow_model = GMFlow( | |
feature_channels=128, | |
num_scales=1, | |
upsample_factor=8, | |
num_head=1, | |
attention_type='swin', | |
ffn_dim_expansion=4, | |
num_transformer_layers=6, | |
).to(self.args.device) | |
checkpoint = torch.load('weights/gmflow_sintel-0c07dcb3.pth', | |
map_location=lambda storage, loc: storage) | |
weights = checkpoint['model'] if 'model' in checkpoint else checkpoint | |
flow_model.load_state_dict(weights, strict=False) | |
flow_model.eval() | |
''' flow model ended ''' | |
results = [] | |
if self.cldm.latent_control: | |
self.cldm.controller.set_total_step(self.args.steps) | |
for i, img in enumerate(loader()): | |
torch.cuda.empty_cache() | |
# import ipdb; ipdb.set_trace() | |
lq = img | |
lq = self.after_load_lq(lq) | |
if self.cldm.latent_control: | |
print(f"[INFO] set seed @ {self.args.seed}") | |
set_seed(self.args.seed) | |
samples, stage1s = self.pipeline.run( | |
lq, self.args.steps, 1.0, self.args.tiled, | |
self.args.tile_size, self.args.tile_stride, | |
self.args.pos_prompt, self.args.neg_prompt, self.args.cfg_scale, | |
self.args.better_start, | |
index=i, input=self.args.input, final_size=self.args.final_size, | |
flow_model=flow_model, | |
) | |
if self.cldm.controller is not None: | |
self.cldm.controller.set_pre_keyframe_lq(lq[self.args.batch_size // 2][None]) | |
results.append(samples) | |
results = np.concatenate(results, axis=0) | |
video_path = f'DiffIR2VR_fps_10.mp4' | |
results = [np.array(img).astype(np.uint8) for img in results] | |
writer = imageio.get_writer(video_path, fps=10, codec='libx264', | |
macro_block_size=1) | |
for img in results: | |
writer.append_data(img) | |
writer.close() | |
return video_path | |
def save(self, sample: np.ndarray) -> None: | |
file_stem, repeat_idx = self.loop_ctx["file_stem"], self.loop_ctx["repeat_idx"] | |
file_name = f"{file_stem}_{repeat_idx}.png" if self.args.n_samples > 1 else f"{file_stem}.png" | |
save_path = os.path.join(self.args.output, file_name) | |
Image.fromarray(sample).save(save_path) | |
print(f"save result to {save_path}") | |
def batch_save(self, samples: np.ndarray, dir: str=None) -> None: | |
file_stems, repeat_idx = self.loop_ctx["file_stem"], self.loop_ctx["repeat_idx"] | |
if dir is not None: | |
out_dir = os.path.join(self.args.output, dir) | |
else: | |
out_dir = os.path.join(self.args.output) | |
os.makedirs(out_dir, exist_ok=True) | |
for file_stem, sample in zip(file_stems, samples): | |
file_name = f"{file_stem}_{repeat_idx}.png" if self.args.n_samples > 1 else f"{file_stem}.png" | |
save_path = os.path.join(out_dir, file_name) | |
Image.fromarray(sample).save(save_path) | |
print(f"save result to {save_path}") | |
class BSRInferenceLoop(InferenceLoop): | |
def init_stage1_model(self) -> None: | |
self.bsrnet: RRDBNet = instantiate_from_config(OmegaConf.load("configs/inference/bsrnet.yaml")) | |
sd = load_model_from_url(MODELS["bsrnet"]) | |
self.bsrnet.load_state_dict(sd, strict=True) | |
self.bsrnet.eval().to(self.args.device) | |
def init_pipeline(self) -> None: | |
self.pipeline = BSRNetPipeline(self.bsrnet, self.cldm, self.diffusion, self.cond_fn, self.args.device, self.args.upscale) | |
class BFRInferenceLoop(InferenceLoop): | |
def init_stage1_model(self) -> None: | |
self.swinir_face: SwinIR = instantiate_from_config(OmegaConf.load("configs/inference/swinir.yaml")) | |
sd = load_model_from_url(MODELS["swinir_face"]) | |
self.swinir_face.load_state_dict(sd, strict=True) | |
self.swinir_face.eval().to(self.args.device) | |
def init_pipeline(self) -> None: | |
self.pipeline = SwinIRPipeline(self.swinir_face, self.cldm, self.diffusion, self.cond_fn, self.args.device) | |
def after_load_lq(self, lq: np.ndarray) -> np.ndarray: | |
# For BFR task, super resolution is achieved by directly upscaling lq | |
return bicubic_resize(lq, self.args.upscale) | |
class BIDInferenceLoop(InferenceLoop): | |
def init_stage1_model(self) -> None: | |
self.scunet_psnr: SCUNet = instantiate_from_config(OmegaConf.load("configs/inference/scunet.yaml")) | |
sd = load_model_from_url(MODELS["scunet_psnr"]) | |
self.scunet_psnr.load_state_dict(sd, strict=True) | |
self.scunet_psnr.eval().to(self.args.device) | |
def init_pipeline(self) -> None: | |
self.pipeline = SCUNetPipeline(self.scunet_psnr, self.cldm, self.diffusion, self.cond_fn, self.args.device) | |
def after_load_lq(self, lq: np.ndarray) -> np.ndarray: | |
# For BID task, super resolution is achieved by directly upscaling lq | |
return batch_bicubic_resize(lq, self.args.upscale) | |
class V1InferenceLoop(InferenceLoop): | |
def init_stage1_model(self) -> None: | |
self.swinir: SwinIR = instantiate_from_config(OmegaConf.load("configs/inference/swinir.yaml")) | |
if self.args.task == "fr": | |
sd = load_model_from_url(MODELS["swinir_face"]) | |
elif self.args.task == "sr": | |
sd = load_model_from_url(MODELS["swinir_general"]) | |
else: | |
raise ValueError(f"DiffBIR v1 doesn't support task: {self.args.task}, please use v2 by passsing '--version v2'") | |
self.swinir.load_state_dict(sd, strict=True) | |
self.swinir.eval().to(self.args.device) | |
def init_pipeline(self) -> None: | |
self.pipeline = SwinIRPipeline(self.swinir, self.cldm, self.diffusion, self.cond_fn, self.args.device) | |
def after_load_lq(self, lq: np.ndarray) -> np.ndarray: | |
# For BFR task, super resolution is achieved by directly upscaling lq | |
return bicubic_resize(lq, self.args.upscale) | |
class UnAlignedBFRInferenceLoop(InferenceLoop): | |
def init_stage1_model(self) -> None: | |
self.bsrnet: RRDBNet = instantiate_from_config(OmegaConf.load("configs/inference/bsrnet.yaml")) | |
sd = load_model_from_url(MODELS["bsrnet"]) | |
self.bsrnet.load_state_dict(sd, strict=True) | |
self.bsrnet.eval().to(self.args.device) | |
self.swinir_face: SwinIR = instantiate_from_config(OmegaConf.load("configs/inference/swinir.yaml")) | |
sd = load_model_from_url(MODELS["swinir_face"]) | |
self.swinir_face.load_state_dict(sd, strict=True) | |
self.swinir_face.eval().to(self.args.device) | |
def init_pipeline(self) -> None: | |
self.pipes = { | |
"bg": BSRNetPipeline(self.bsrnet, self.cldm, self.diffusion, self.cond_fn, self.args.device, self.args.upscale), | |
"face": SwinIRPipeline(self.swinir_face, self.cldm, self.diffusion, self.cond_fn, self.args.device) | |
} | |
self.pipeline = self.pipes["face"] | |
def setup(self) -> None: | |
super().setup() | |
self.cropped_face_dir = os.path.join(self.args.output, "cropped_faces") | |
os.makedirs(self.cropped_face_dir, exist_ok=True) | |
self.restored_face_dir = os.path.join(self.args.output, "restored_faces") | |
os.makedirs(self.restored_face_dir, exist_ok=True) | |
self.restored_bg_dir = os.path.join(self.args.output, "restored_backgrounds") | |
os.makedirs(self.restored_bg_dir, exist_ok=True) | |
def lq_loader(self) -> Generator[np.ndarray, None, None]: | |
base_loader = super().lq_loader() | |
self.face_helper = FaceRestoreHelper( | |
device=self.args.device, | |
upscale_factor=1, | |
face_size=512, | |
use_parse=True, | |
det_model="retinaface_resnet50" | |
) | |
def _loader() -> Generator[np.ndarray, None, None]: | |
for lq in base_loader(): | |
### set input image | |
self.face_helper.clean_all() | |
upscaled_bg = bicubic_resize(lq, self.args.upscale) | |
self.face_helper.read_image(upscaled_bg) | |
### get face landmarks for each face | |
self.face_helper.get_face_landmarks_5(resize=640, eye_dist_threshold=5) | |
self.face_helper.align_warp_face() | |
print(f"detect {len(self.face_helper.cropped_faces)} faces") | |
### restore each face (has been upscaeled) | |
for i, lq_face in enumerate(self.face_helper.cropped_faces): | |
self.loop_ctx["is_face"] = True | |
self.loop_ctx["face_idx"] = i | |
self.loop_ctx["cropped_face"] = lq_face | |
yield lq_face | |
### restore background (hasn't been upscaled) | |
self.loop_ctx["is_face"] = False | |
yield lq | |
return _loader | |
def after_load_lq(self, lq: np.ndarray) -> np.ndarray: | |
if self.loop_ctx["is_face"]: | |
self.pipeline = self.pipes["face"] | |
else: | |
self.pipeline = self.pipes["bg"] | |
return lq | |
def save(self, sample: np.ndarray) -> None: | |
file_stem, repeat_idx = self.loop_ctx["file_stem"], self.loop_ctx["repeat_idx"] | |
if self.loop_ctx["is_face"]: | |
face_idx = self.loop_ctx["face_idx"] | |
file_name = f"{file_stem}_{repeat_idx}_face_{face_idx}.png" | |
Image.fromarray(sample).save(os.path.join(self.restored_face_dir, file_name)) | |
cropped_face = self.loop_ctx["cropped_face"] | |
Image.fromarray(cropped_face).save(os.path.join(self.cropped_face_dir, file_name)) | |
self.face_helper.add_restored_face(sample) | |
else: | |
self.face_helper.get_inverse_affine() | |
# paste each restored face to the input image | |
restored_img = self.face_helper.paste_faces_to_input_image( | |
upsample_img=sample | |
) | |
file_name = f"{file_stem}_{repeat_idx}.png" | |
Image.fromarray(sample).save(os.path.join(self.restored_bg_dir, file_name)) | |
Image.fromarray(restored_img).save(os.path.join(self.output_dir, file_name)) | |