import torch from .position import PositionEmbeddingSine def split_feature(feature, num_splits=2, channel_last=False, ): if channel_last: # [B, H, W, C] b, h, w, c = feature.size() # if h % num_splits: # feature = feature[:, :, :-1, :] # if w % num_splits: # feature = feature[:, :, :, :-1] # b, h, w, c = feature.size() assert h % num_splits == 0 and w % num_splits == 0 b_new = b * num_splits * num_splits h_new = h // num_splits w_new = w // num_splits feature = feature.view(b, num_splits, h // num_splits, num_splits, w // num_splits, c ).permute(0, 1, 3, 2, 4, 5).reshape(b_new, h_new, w_new, c) # [B*K*K, H/K, W/K, C] else: # [B, C, H, W] b, c, h, w = feature.size() # if h % num_splits: # feature = feature[:, :, :-1, :] # if w % num_splits: # feature = feature[:, :, :, :-1] # b, c, h, w = feature.size() assert h % num_splits == 0 and w % num_splits == 0 b_new = b * num_splits * num_splits h_new = h // num_splits w_new = w // num_splits feature = feature.view(b, c, num_splits, h // num_splits, num_splits, w // num_splits ).permute(0, 2, 4, 1, 3, 5).reshape(b_new, c, h_new, w_new) # [B*K*K, C, H/K, W/K] return feature def merge_splits(splits, num_splits=2, channel_last=False, ): if channel_last: # [B*K*K, H/K, W/K, C] b, h, w, c = splits.size() new_b = b // num_splits // num_splits splits = splits.view(new_b, num_splits, num_splits, h, w, c) merge = splits.permute(0, 1, 3, 2, 4, 5).contiguous().view( new_b, num_splits * h, num_splits * w, c) # [B, H, W, C] else: # [B*K*K, C, H/K, W/K] b, c, h, w = splits.size() new_b = b // num_splits // num_splits splits = splits.view(new_b, num_splits, num_splits, c, h, w) merge = splits.permute(0, 3, 1, 4, 2, 5).contiguous().view( new_b, c, num_splits * h, num_splits * w) # [B, C, H, W] return merge def normalize_img(img0, img1): # loaded images are in [0, 255] # normalize by ImageNet mean and std mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(img1.device) std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(img1.device) img0 = (img0 / 255. - mean) / std img1 = (img1 / 255. - mean) / std return img0, img1 def feature_add_position(feature0, feature1, attn_splits, feature_channels): pos_enc = PositionEmbeddingSine(num_pos_feats=feature_channels // 2) if attn_splits > 1: # add position in splited window # import ipdb; ipdb.set_trace() feature0_splits = split_feature(feature0, num_splits=attn_splits) feature1_splits = split_feature(feature1, num_splits=attn_splits) position = pos_enc(feature0_splits) feature0_splits = feature0_splits + position feature1_splits = feature1_splits + position feature0 = merge_splits(feature0_splits, num_splits=attn_splits) feature1 = merge_splits(feature1_splits, num_splits=attn_splits) else: position = pos_enc(feature0) feature0 = feature0 + position feature1 = feature1 + position return feature0, feature1