Spaces:
Sleeping
Sleeping
Kolumbus Lindh
commited on
Commit
·
47aec4f
1
Parent(s):
ca0c241
updates
Browse files
app.py
CHANGED
@@ -11,13 +11,13 @@ def load_user_model(repo_id, model_file):
|
|
11 |
|
12 |
# Generate a response using the specified model and prompt
|
13 |
def generate_response(model, prompt):
|
14 |
-
response = model(prompt, max_tokens=512, temperature=0.5)
|
15 |
return response["choices"][0]["text"]
|
16 |
|
17 |
# Evaluate responses using the LoRA evaluation model
|
18 |
def evaluate_responses(prompt, repo_a, model_a, repo_b, model_b, evaluation_criteria):
|
19 |
if len(evaluation_criteria) > 3:
|
20 |
-
return "Error: Please select up to 3 evaluation criteria only."
|
21 |
|
22 |
# Load models
|
23 |
model_a_instance = load_user_model(repo_a, model_a)
|
@@ -47,17 +47,12 @@ Please evaluate the responses based on the selected criteria. For each criterion
|
|
47 |
evaluation_response = lora_model.create_completion(
|
48 |
prompt=evaluation_prompt,
|
49 |
max_tokens=512,
|
50 |
-
temperature=0.5
|
|
|
51 |
)
|
52 |
evaluation_results = evaluation_response["choices"][0]["text"]
|
53 |
|
54 |
-
|
55 |
-
final_output = f"""
|
56 |
-
Response A:\n{response_a}\n\n
|
57 |
-
Response B:\n{response_b}\n\n
|
58 |
-
Evaluation Results:\n{evaluation_results}
|
59 |
-
"""
|
60 |
-
return final_output
|
61 |
|
62 |
# Load the LoRA evaluation model
|
63 |
def load_lora_model():
|
@@ -73,26 +68,38 @@ print("LoRA evaluation model loaded successfully!")
|
|
73 |
|
74 |
# Gradio interface
|
75 |
with gr.Blocks(title="LLM as a Judge") as demo:
|
76 |
-
gr.Markdown("## LLM as a Judge
|
77 |
|
78 |
# Model inputs
|
79 |
-
repo_a_input = gr.Textbox(label="Model A Repository", placeholder="
|
80 |
-
model_a_input = gr.Textbox(label="Model A File Name", placeholder="
|
81 |
-
repo_b_input = gr.Textbox(label="Model B Repository", placeholder="
|
82 |
-
model_b_input = gr.Textbox(label="Model B File Name", placeholder="
|
83 |
|
84 |
# Prompt and criteria inputs
|
85 |
prompt_input = gr.Textbox(label="Enter Prompt", placeholder="Enter the prompt here...", lines=3)
|
86 |
criteria_dropdown = gr.CheckboxGroup(
|
87 |
-
label="Select
|
88 |
-
choices=["Clarity", "Completeness", "Accuracy"
|
89 |
)
|
90 |
|
91 |
# Button and outputs
|
92 |
evaluate_button = gr.Button("Evaluate Models")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
evaluation_output = gr.Textbox(
|
94 |
label="Evaluation Results",
|
95 |
-
placeholder="The evaluation
|
96 |
lines=20,
|
97 |
interactive=False
|
98 |
)
|
@@ -101,7 +108,7 @@ with gr.Blocks(title="LLM as a Judge") as demo:
|
|
101 |
evaluate_button.click(
|
102 |
fn=evaluate_responses,
|
103 |
inputs=[prompt_input, repo_a_input, model_a_input, repo_b_input, model_b_input, criteria_dropdown],
|
104 |
-
outputs=[evaluation_output]
|
105 |
)
|
106 |
|
107 |
# Launch app
|
|
|
11 |
|
12 |
# Generate a response using the specified model and prompt
|
13 |
def generate_response(model, prompt):
|
14 |
+
response = model(prompt, max_tokens=512, temperature=0.5, top_p=0.95)
|
15 |
return response["choices"][0]["text"]
|
16 |
|
17 |
# Evaluate responses using the LoRA evaluation model
|
18 |
def evaluate_responses(prompt, repo_a, model_a, repo_b, model_b, evaluation_criteria):
|
19 |
if len(evaluation_criteria) > 3:
|
20 |
+
return "Error: Please select up to 3 evaluation criteria only.", "", ""
|
21 |
|
22 |
# Load models
|
23 |
model_a_instance = load_user_model(repo_a, model_a)
|
|
|
47 |
evaluation_response = lora_model.create_completion(
|
48 |
prompt=evaluation_prompt,
|
49 |
max_tokens=512,
|
50 |
+
temperature=0.5,
|
51 |
+
top_p=0.95,
|
52 |
)
|
53 |
evaluation_results = evaluation_response["choices"][0]["text"]
|
54 |
|
55 |
+
return response_a, response_b, evaluation_results
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
# Load the LoRA evaluation model
|
58 |
def load_lora_model():
|
|
|
68 |
|
69 |
# Gradio interface
|
70 |
with gr.Blocks(title="LLM as a Judge") as demo:
|
71 |
+
gr.Markdown("## LLM as a Judge 𐄷")
|
72 |
|
73 |
# Model inputs
|
74 |
+
repo_a_input = gr.Textbox(label="Model A Repository", placeholder="KolumbusLindh/LoRA-6150")
|
75 |
+
model_a_input = gr.Textbox(label="Model A File Name", placeholder="unsloth.F16.gguf")
|
76 |
+
repo_b_input = gr.Textbox(label="Model B Repository", placeholder="forestav/LoRA-2000")
|
77 |
+
model_b_input = gr.Textbox(label="Model B File Name", placeholder="unsloth.F16.gguf")
|
78 |
|
79 |
# Prompt and criteria inputs
|
80 |
prompt_input = gr.Textbox(label="Enter Prompt", placeholder="Enter the prompt here...", lines=3)
|
81 |
criteria_dropdown = gr.CheckboxGroup(
|
82 |
+
label="Select Evaluation Criteria (Max 3)",
|
83 |
+
choices=["Clarity", "Completeness", "Accuracy"] # Restricted criteria
|
84 |
)
|
85 |
|
86 |
# Button and outputs
|
87 |
evaluate_button = gr.Button("Evaluate Models")
|
88 |
+
response_a_output = gr.Textbox(
|
89 |
+
label="Response A",
|
90 |
+
placeholder="Response from Model A will appear here...",
|
91 |
+
lines=10,
|
92 |
+
interactive=False
|
93 |
+
)
|
94 |
+
response_b_output = gr.Textbox(
|
95 |
+
label="Response B",
|
96 |
+
placeholder="Response from Model B will appear here...",
|
97 |
+
lines=10,
|
98 |
+
interactive=False
|
99 |
+
)
|
100 |
evaluation_output = gr.Textbox(
|
101 |
label="Evaluation Results",
|
102 |
+
placeholder="The evaluation analysis will appear here...",
|
103 |
lines=20,
|
104 |
interactive=False
|
105 |
)
|
|
|
108 |
evaluate_button.click(
|
109 |
fn=evaluate_responses,
|
110 |
inputs=[prompt_input, repo_a_input, model_a_input, repo_b_input, model_b_input, criteria_dropdown],
|
111 |
+
outputs=[response_a_output, response_b_output, evaluation_output]
|
112 |
)
|
113 |
|
114 |
# Launch app
|