import os import json import requests import subprocess from typing import Mapping, Optional, Any import torch import transformers from transformers import AutoTokenizer, AutoModelForCausalLM from huggingface_hub import snapshot_download from urllib.parse import quote from langchain import PromptTemplate, HuggingFaceHub, LLMChain from langchain.llms import HuggingFacePipeline from langchain.llms.base import LLM from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceHubEmbeddings, HuggingFaceInstructEmbeddings from langchain.vectorstores import FAISS from sentence_transformers import CrossEncoder from qa_engine import logger from qa_engine.response import Response from qa_engine.mocks import MockLocalBinaryModel class LocalBinaryModel(LLM): model_id: str = None llm: None = None def __init__(self, model_id: str = None): super().__init__() # pip install llama_cpp_python==0.1.39 from llama_cpp import Llama model_path = f'qa_engine/{model_id}' if not os.path.exists(model_path): raise ValueError(f'{model_path} does not exist') self.model_id = model_id self.llm = Llama(model_path=model_path, n_ctx=4096) def _call(self, prompt: str, stop: Optional[list[str]] = None) -> str: output = self.llm( prompt, max_tokens=1024, stop=['Q:'], echo=False ) return output['choices'][0]['text'] @property def _identifying_params(self) -> Mapping[str, Any]: return {'name_of_model': self.model_id} @property def _llm_type(self) -> str: return self.model_id class TransformersPipelineModel(LLM): model_id: str = None pipeline: str = None def __init__(self, model_id: str = None): super().__init__() self.model_id = model_id tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, trust_remote_code=True, load_in_8bit=False, device_map='auto', resume_download=True, ) self.pipeline = transformers.pipeline( 'text-generation', model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map='auto', eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, min_new_tokens=64, max_new_tokens=800, temperature=0.5, do_sample=True, ) def _call(self, prompt: str, stop: Optional[list[str]] = None) -> str: output_text = self.pipeline(prompt)[0]['generated_text'] output_text = output_text.replace(prompt+'\n', '') return output_text @property def _identifying_params(self) -> Mapping[str, Any]: return {'name_of_model': self.model_id} @property def _llm_type(self) -> str: return self.model_id class APIServedModel(LLM): model_url: str = None debug: bool = None def __init__(self, model_url: str = None, debug: bool = None): super().__init__() if model_url[-1] == '/': raise ValueError('URL should not end with a slash - "/"') self.model_url = model_url self.debug = debug def _call(self, prompt: str, stop: Optional[list[str]] = None) -> str: prompt_encoded = quote(prompt, safe='') url = f'{self.model_url}/?prompt={prompt_encoded}' if self.debug: logger.info(f'URL: {url}') try: response = requests.get(url, timeout=1200, verify=False) response.raise_for_status() return json.loads(response.content)['output_text'] except Exception as err: logger.error(f'Error: {err}') return f'Error: {err}' @property def _identifying_params(self) -> Mapping[str, Any]: return {'name_of_model': f'model url: {self.model_url}'} @property def _llm_type(self) -> str: return 'api_model' class QAEngine(): """ QAEngine class, used for generating answers to questions. Args: llm_model_id (str): The ID of the LLM model to be used. embedding_model_id (str): The ID of the embedding model to be used. index_repo_id (str): The ID of the index repository to be used. run_locally (bool, optional): Whether to run the models locally or on the Hugging Face hub. Defaults to True. use_docs_for_context (bool, optional): Whether to use relevant documents as context for generating answers. Defaults to True. use_messages_for_context (bool, optional): Whether to use previous messages as context for generating answers. Defaults to True. debug (bool, optional): Whether to log debug information. Defaults to False. Attributes: use_docs_for_context (bool): Whether to use relevant documents as context for generating answers. use_messages_for_context (bool): Whether to use previous messages as context for generating answers. debug (bool): Whether to log debug information. llm_model (Union[LocalBinaryModel, HuggingFacePipeline, HuggingFaceHub]): The LLM model to be used. embedding_model (Union[HuggingFaceInstructEmbeddings, HuggingFaceHubEmbeddings]): The embedding model to be used. prompt_template (PromptTemplate): The prompt template to be used. llm_chain (LLMChain): The LLM chain to be used. knowledge_index (FAISS): The FAISS index to be used. """ def __init__( self, llm_model_id: str, embedding_model_id: str, index_repo_id: str, prompt_template: str, use_docs_for_context: bool = True, num_relevant_docs: int = 3, add_sources_to_response: bool = True, use_messages_for_context: bool = True, first_stage_docs: int = 50, debug: bool = False ): super().__init__() self.prompt_template = prompt_template self.use_docs_for_context = use_docs_for_context self.num_relevant_docs = num_relevant_docs self.add_sources_to_response = add_sources_to_response self.use_messages_for_context = use_messages_for_context self.first_stage_docs = first_stage_docs self.debug = debug if 'local_models/' in llm_model_id: logger.info('using local binary model') self.llm_model = LocalBinaryModel( model_id=llm_model_id ) elif 'api_models/' in llm_model_id: logger.info('using api served model') self.llm_model = APIServedModel( model_url=llm_model_id.replace('api_models/', ''), debug=self.debug ) elif llm_model_id == 'mock': logger.info('using mock model') self.llm_model = MockLocalBinaryModel() else: logger.info('using transformers pipeline model') self.llm_model = TransformersPipelineModel( model_id=llm_model_id ) prompt = PromptTemplate( template=prompt_template, input_variables=['question', 'context'] ) self.llm_chain = LLMChain(prompt=prompt, llm=self.llm_model) if self.use_docs_for_context: logger.info(f'Downloading {index_repo_id}') snapshot_download( repo_id=index_repo_id, allow_patterns=['*.faiss', '*.pkl'], repo_type='dataset', local_dir='indexes/run/' ) logger.info('Loading embedding model') embed_instruction = 'Represent the Hugging Face library documentation' query_instruction = 'Query the most relevant piece of information from the Hugging Face documentation' embedding_model = HuggingFaceInstructEmbeddings( model_name=embedding_model_id, embed_instruction=embed_instruction, query_instruction=query_instruction ) logger.info('Loading index') self.knowledge_index = FAISS.load_local('./indexes/run/', embedding_model) self.reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2') @staticmethod def _preprocess_question(question: str) -> str: if question[-1] != '?': question += '?' return question @staticmethod def _postprocess_answer(answer: str) -> str: ''' Preprocess the answer by removing unnecessary sequences and stop sequences. ''' SEQUENCES_TO_REMOVE = [ 'Factually: ', 'Answer: ', '<>', '<>', '[INST]', '[/INST]' ] SEQUENCES_TO_STOP = [ 'User:', 'You:', 'Question:' ] for seq in SEQUENCES_TO_REMOVE: answer = answer.replace(seq, '') for seq in SEQUENCES_TO_STOP: if seq in answer: answer = answer[:answer.index(seq)] answer = answer.strip() return answer def get_response(self, question: str, messages_context: str = '') -> Response: """ Generate an answer to the specified question. Args: question (str): The question to be answered. messages_context (str, optional): The context to be used for generating the answer. Defaults to ''. Returns: response (Response): The Response object containing the generated answer and the sources of information used to generate the response. """ response = Response() context = '' relevant_docs = '' if self.use_messages_for_context and messages_context: messages_context = f'\nPrevious questions and answers:\n{messages_context}' context += messages_context if self.use_docs_for_context: logger.info('Retriving documents') # messages context is used for better retrival retrival_query = messages_context + question relevant_docs = self.knowledge_index.similarity_search( query=retrival_query, k=self.first_stage_docs ) cross_encoding_predictions = self.reranker.predict( [(retrival_query, doc.page_content) for doc in relevant_docs] ) relevant_docs = [ doc for _, doc in sorted( zip(cross_encoding_predictions, relevant_docs), reverse=True, key = lambda x: x[0] ) ] relevant_docs = relevant_docs[:self.num_relevant_docs] context += '\nExtracted documents:\n' context += ''.join([doc.page_content for doc in relevant_docs]) metadata = [doc.metadata for doc in relevant_docs] response.set_sources(sources=[str(m['source']) for m in metadata]) logger.info('Running LLM chain') question_processed = QAEngine._preprocess_question(question) answer = self.llm_chain.run(question=question_processed, context=context) answer = QAEngine._postprocess_answer(answer) response.set_answer(answer) logger.info('Received answer') if self.debug: logger.info('\n' + '=' * 100) sep = '\n' + '-' * 100 logger.info(f'question len: {len(question)} {sep}') logger.info(f'question: {question} {sep}') logger.info(f'answer len: {len(response.get_answer())} {sep}') logger.info(f'answer: {response.get_answer()} {sep}') logger.info(f'{response.get_sources_as_text()} {sep}') logger.info(f'messages_contex: {messages_context} {sep}') logger.info(f'relevant_docs: {relevant_docs} {sep}') logger.info(f'context len: {len(context)} {sep}') logger.info(f'context: {context} {sep}') return response