KoonJamesZ
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -15,34 +15,34 @@ df['embeding_context'] = df['embeding_context'].astype(str).fillna('')
|
|
15 |
# Filter out any rows where 'embeding_context' might be empty or invalid
|
16 |
df = df[df['embeding_context'] != '']
|
17 |
|
18 |
-
# Encode the 'embeding_context' column
|
19 |
-
embedding_contexts = df['embeding_context'].tolist()
|
20 |
-
embeddings_csv = model.encode(embedding_contexts, batch_size=12, max_length=1024)['dense_vecs']
|
21 |
-
|
22 |
-
# Convert embeddings to numpy array
|
23 |
-
embeddings_np = np.array(embeddings_csv).astype('float32')
|
24 |
-
|
25 |
-
# FAISS index file path
|
26 |
-
index_file_path = 'vector_store_bge_m3.index'
|
27 |
-
|
28 |
-
# Check if FAISS index file already exists
|
29 |
-
if os.path.exists(index_file_path):
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
else:
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
index = faiss.read_index(
|
46 |
|
47 |
|
48 |
# Function to perform search and return all columns
|
|
|
15 |
# Filter out any rows where 'embeding_context' might be empty or invalid
|
16 |
df = df[df['embeding_context'] != '']
|
17 |
|
18 |
+
# # Encode the 'embeding_context' column
|
19 |
+
# embedding_contexts = df['embeding_context'].tolist()
|
20 |
+
# embeddings_csv = model.encode(embedding_contexts, batch_size=12, max_length=1024)['dense_vecs']
|
21 |
+
|
22 |
+
# # Convert embeddings to numpy array
|
23 |
+
# embeddings_np = np.array(embeddings_csv).astype('float32')
|
24 |
+
|
25 |
+
# # FAISS index file path
|
26 |
+
# index_file_path = 'vector_store_bge_m3.index'
|
27 |
+
|
28 |
+
# # Check if FAISS index file already exists
|
29 |
+
# if os.path.exists(index_file_path):
|
30 |
+
# # Load the existing FAISS index from file
|
31 |
+
# index = faiss.read_index(index_file_path)
|
32 |
+
# print("FAISS index loaded from file.")
|
33 |
+
# else:
|
34 |
+
# # Initialize FAISS index (for L2 similarity)
|
35 |
+
# dim = embeddings_np.shape[1]
|
36 |
+
# index = faiss.IndexFlatL2(dim)
|
37 |
+
|
38 |
+
# # Add embeddings to the FAISS index
|
39 |
+
# index.add(embeddings_np)
|
40 |
+
|
41 |
+
# # Save the FAISS index to a file for future use
|
42 |
+
# faiss.write_index(index, index_file_path)
|
43 |
+
# print("FAISS index created and saved to file.")
|
44 |
+
|
45 |
+
index = faiss.read_index('vector_store_bge_m3.index')
|
46 |
|
47 |
|
48 |
# Function to perform search and return all columns
|