Korron's picture
baseline
5f08496
raw
history blame
1.17 kB
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings, SimpleDirectoryReader, VectorStoreIndex
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.postprocessor import SimilarityPostprocessor
from config import config
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
Settings.llm = None
Settings.chunk_size = config["chunk_size"]
Settings.chunk_overlap = config["chunk_overlap"]
documents = SimpleDirectoryReader("rag_data").load_data()
index = VectorStoreIndex.from_documents(documents)
def get_context(query, top_k = 3):
retriever = VectorIndexRetriever(
index=index,
similarity_top_k=top_k,
)
query_engine = RetrieverQueryEngine(
retriever=retriever,
node_postprocessors=[SimilarityPostprocessor(similarity_cutoff=config["similarity_cutoff"])],
)
response = query_engine.query(query)
context = "Context:\n"
for i in range(top_k):
context = context + response.source_nodes[i].text + "\n\n"
return context