Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from inference import get_bot_response | |
from rag import get_context | |
from config import config | |
from huggingface_hub import InferenceClient | |
model_name = "mistralai/Mistral-7B-Instruct-v0.2" | |
client = InferenceClient(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) | |
print("model start loading") | |
model = AutoModelForCausalLM.from_pretrained(model_name, | |
device_map="auto", | |
trust_remote_code=False, | |
revision="main") | |
print("model loaded") | |
# model = AutoModelForCausalLM.from_pretrained(config["model_checkpoint"], | |
# device_map="auto", | |
# trust_remote_code=False, | |
# revision="main") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
request = message | |
context = get_context(request, config["top_k"]) | |
response = get_bot_response(request, context, model, tokenizer) | |
return response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |