from langchain.retrievers.multi_query import MultiQueryRetriever from langchain_openai import ChatOpenAI from langchain_community.document_transformers import LongContextReorder from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain.schema import Document from langchain_chroma import Chroma from langchain_openai import OpenAIEmbeddings from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.chains import create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.messages import HumanMessage def generate_response(input, history): vector_db = Chroma(persist_directory="vector_db", embedding_function=OpenAIEmbeddings()) # Multi-query retriever retriever = vector_db.as_retriever( search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.7, "k": 10} ) llm = ChatOpenAI(model="gpt-4o-mini", temperature=0.2) retriever = MultiQueryRetriever.from_llm( retriever=retriever, llm=llm ) unique_docs = retriever.invoke(input) reordering = LongContextReorder() reordered_docs = reordering.transform_documents(unique_docs) SYSTEM_TEMPLATE = """ Answer the user's questions based on the below context. The context will always be relevant to the question. Use chat history if required to answer the question. Always be very descriptive, unless stated otherwise. Explain as if you are a master at this subject. If you are asked to show with an formula with anexample, then explain the basics first, then ask for specific values to use for the formula. {context} {chat_history} """ question_answering_prompt = ChatPromptTemplate.from_messages( [ ( "system", SYSTEM_TEMPLATE, ), MessagesPlaceholder(variable_name="messages"), ] ) document_chain = create_stuff_documents_chain(llm, question_answering_prompt) response = document_chain.invoke( { "context": reordered_docs, "messages": [ HumanMessage(content=input) ], "chat_history": history } ) return response if __name__ == "__main__": prompt = "How should my MDPE pipe cross a Nallah?" response = generate_response(prompt, []) print(response)