File size: 7,735 Bytes
b775716
2927735
b775716
 
 
2927735
b775716
 
 
 
 
 
 
 
 
 
 
be5df66
b775716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f4cba2
56dc125
b775716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2927735
b775716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Application file for Gradio App for OpenAI Model

import gradio as gr
import time
import datetime
import os

from lc_base.chain import openai_chain
from lc_base.dnd_database import create_dnd_database
from driveapi.drive import upload_chat_to_drive
from driveapi.drive_database import create_chroma_db

############################# Global Params #############################

time_diff = 0
# model_name="gpt-3.5-turbo-1106" # FOR TESTING
# model_name = "gpt-4-1106-preview"
model_name = "gpt-4o-mini-2024-07-18"
search_type = "stuff"
input_question = ""
model_response = ""
user_feedback = ""

dir = ""
title = """<h1 align="center">ResearchBuddy</h1>"""
description = """<br><br><h3 align="center">This is a GPT based Research Buddy to assist in navigating new research topics.</h3>"""

DEFAULT_STATUS = "⬆️Submit a (shared) drive link containing only PDFs \n-or- \n⬅️Upload PDF files"
DEFAULT_TEXT_FEEDBACK = ""
DEFAULT_NUM_FEEDBACK = "None"
############################# Drive API specific function #############################
def create_data_from_drive(drive_link):
    global db

    drive_link += "?usp=sharing"
    os.environ['DRIVE_LINK'] = str(drive_link)
    print("Drive link saved in the environment! Creating Database...")

    db = create_chroma_db()
    return "Processing Completed - You can start the chat now!"

############################# Drag and Drop PDF processing #############################
def check_pdfs(pdf_files):
    global db
    db = create_dnd_database(pdf_files)
    if not db:
        return "Please upload PDF files again or submit a drive link containing only PDFs."
    else:
        return "Processing Completed - You can start the chat now!"

############################# Chatbot Specific functions #############################
def user(user_message, history):
    return "", history + [[user_message, None]]

def respond(message, chat_history):

    global time_diff, model_response, input_question

    question = str(message)
    chain = openai_chain(inp_dir=dir)

    query = question
    start_time = time.time()

    output = chain.get_response_from_drive(query=query, database=db, k=10, model_name=model_name, type=search_type)
    
    # Update global variables for logging
    time_diff = time.time() - start_time
    model_response = output
    input_question = question
    save_text_feedback(feedback="Default Conversation Save!!!") # Upload chatlog to drive after every response irrespective of feedback
     
    bot_message = output
    chat_history.append((message, bot_message))

    time.sleep(1) # Pause for a second to avoid overloading
    return " ", chat_history 

############################# Feedback Specific functions #############################

def save_feedback(feedback):
    global user_feedback
    user_feedback = feedback

    curr_date = datetime.datetime.now()
    file_name = f"chat_{curr_date.day}_{curr_date.month}_{curr_date.hour}_{curr_date.minute}_{curr_date.second}.csv"
    log_data = [
        ["Question", "Response", "Model", "Time", "Feedback"],
        [input_question, model_response, model_name, time_diff, user_feedback]
    ]
    
    if model_response and user_feedback[0] != "None":
        upload_chat_to_drive(log_data, file_name)


def default_feedback():
    return "None"

def default_text():
    return ""

def save_text_feedback(feedback):
    global text_feedback
    text_feedback = feedback

    curr_date = datetime.datetime.now()
    file_name = f"chat_{curr_date.day}_{curr_date.month}_{curr_date.hour}_{curr_date.minute}_{curr_date.second}.csv"
    log_data = [
        ["Question", "Response", "Model", "Time", "Feedback"],
        [input_question, model_response, model_name, time_diff, text_feedback]
    ]

    upload_chat_to_drive(log_data, file_name)


############################# Gradio Application Block #############################
with gr.Blocks(theme=gr.themes.Soft(primary_hue="emerald", neutral_hue="slate")) as chat:
    gr.HTML(title)

    global db

    # PDF Drag and Drop + Drive link Input + Status containers
    with gr.Row(equal_height=True):
        with gr.Column():
            with gr.Row():
                pdf_files_dnd = gr.File(file_count='multiple', height=250, label="Upload PDF Files")

        with gr.Column():
           with gr.Row():
                drive_link_input = gr.Textbox(lines=1, label="Enter your shared drive link, then press Enter...")
           with gr.Row():
                status_message = gr.Text(label="Status", value=DEFAULT_STATUS, text_align='center')
            

    # What happens when PDF is uploaded or a drive link is submitted
    drive_link_input.submit(
        fn = create_data_from_drive, 
        inputs = [drive_link_input], 
        outputs = [status_message])
    
    pdf_files_dnd.change(
        fn=check_pdfs, 
        inputs=[pdf_files_dnd], 
        outputs=[status_message], 
        preprocess=False, 
        postprocess=False) # Set preprocess and postprocess to False, to avoid the tmpfile object creation, instead get a Dict

    # Chatbot container
    chatbot = gr.Chatbot(height=750)
    msg = gr.Textbox(label="Send a message", placeholder="Send a message",
                             show_label=False, container=False)  
    
    with gr.Row():
        with gr.Column():
            clear_history_button = gr.ClearButton(value="Clear Chat History")

        with gr.Column():
            new_chat_button = gr.ClearButton(value="New Chat")

    # Sample questions
    with gr.Row():
        with gr.Column():
            gr.Examples([
                ["Explain these documents to me in simpler terms."],
                ["What does these documents talk about?"],
                ["Give the key topics covered in these documents in less than 10 words."],
                ["What are the key findings in these documents?"],
            ], inputs=msg, label= "Click on any example to copy in the chatbox"
            )

    # Feedback options container
    with gr.Row():
        with gr.Column():
            feedback_radio = gr.Radio(
                choices=["1", "2", "3", "4", "5", "6", "None"],
                value=["None"],
                label="On a scale from 1 (very unsatisfied) to 6 (very satisfied), how would you rate the current response?",
                )
        
        with gr.Column():
            feedback_text = gr.Textbox(lines=1, label="Additional comments on the current response...")


    # Get a response when a message is submitted to the chatbot
    msg.submit(
        fn = respond, 
        inputs = [msg, chatbot], 
        outputs = [msg, chatbot],
        queue = True)
    

    # Set default feedback to None after a message is submitted
    msg.submit(
        fn = default_feedback, 
        outputs=[feedback_radio],
        queue = True
        )
    
    # Change whenever some feedback is given (Numeric or Text)
    feedback_radio.change(
        fn=save_feedback,
        inputs=[feedback_radio]
    )

    feedback_text.submit(
        fn=save_text_feedback,
        inputs=[feedback_text],
        queue=True
    )

    # Clear the text feedback after it is submitted
    feedback_text.submit(
        fn=default_text,
        outputs=[feedback_text],
        queue=True
    )

    # Clear the chat history/ New chat
    clear_history_button.click(lambda: [None, None], outputs=[msg, chatbot])
    new_chat_button.click(
        lambda: [None, None, None, None, DEFAULT_STATUS, DEFAULT_NUM_FEEDBACK, DEFAULT_TEXT_FEEDBACK], 
        outputs=[msg, chatbot, pdf_files_dnd, drive_link_input, status_message, feedback_radio, feedback_text])

    # Description at the bottom of the application
    gr.HTML(description)

# Enable queing
chat.queue()
chat.launch()