Spaces:
Sleeping
Sleeping
File size: 7,735 Bytes
b775716 2927735 b775716 2927735 b775716 be5df66 b775716 2f4cba2 56dc125 b775716 2927735 b775716 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# Application file for Gradio App for OpenAI Model
import gradio as gr
import time
import datetime
import os
from lc_base.chain import openai_chain
from lc_base.dnd_database import create_dnd_database
from driveapi.drive import upload_chat_to_drive
from driveapi.drive_database import create_chroma_db
############################# Global Params #############################
time_diff = 0
# model_name="gpt-3.5-turbo-1106" # FOR TESTING
# model_name = "gpt-4-1106-preview"
model_name = "gpt-4o-mini-2024-07-18"
search_type = "stuff"
input_question = ""
model_response = ""
user_feedback = ""
dir = ""
title = """<h1 align="center">ResearchBuddy</h1>"""
description = """<br><br><h3 align="center">This is a GPT based Research Buddy to assist in navigating new research topics.</h3>"""
DEFAULT_STATUS = "⬆️Submit a (shared) drive link containing only PDFs \n-or- \n⬅️Upload PDF files"
DEFAULT_TEXT_FEEDBACK = ""
DEFAULT_NUM_FEEDBACK = "None"
############################# Drive API specific function #############################
def create_data_from_drive(drive_link):
global db
drive_link += "?usp=sharing"
os.environ['DRIVE_LINK'] = str(drive_link)
print("Drive link saved in the environment! Creating Database...")
db = create_chroma_db()
return "Processing Completed - You can start the chat now!"
############################# Drag and Drop PDF processing #############################
def check_pdfs(pdf_files):
global db
db = create_dnd_database(pdf_files)
if not db:
return "Please upload PDF files again or submit a drive link containing only PDFs."
else:
return "Processing Completed - You can start the chat now!"
############################# Chatbot Specific functions #############################
def user(user_message, history):
return "", history + [[user_message, None]]
def respond(message, chat_history):
global time_diff, model_response, input_question
question = str(message)
chain = openai_chain(inp_dir=dir)
query = question
start_time = time.time()
output = chain.get_response_from_drive(query=query, database=db, k=10, model_name=model_name, type=search_type)
# Update global variables for logging
time_diff = time.time() - start_time
model_response = output
input_question = question
save_text_feedback(feedback="Default Conversation Save!!!") # Upload chatlog to drive after every response irrespective of feedback
bot_message = output
chat_history.append((message, bot_message))
time.sleep(1) # Pause for a second to avoid overloading
return " ", chat_history
############################# Feedback Specific functions #############################
def save_feedback(feedback):
global user_feedback
user_feedback = feedback
curr_date = datetime.datetime.now()
file_name = f"chat_{curr_date.day}_{curr_date.month}_{curr_date.hour}_{curr_date.minute}_{curr_date.second}.csv"
log_data = [
["Question", "Response", "Model", "Time", "Feedback"],
[input_question, model_response, model_name, time_diff, user_feedback]
]
if model_response and user_feedback[0] != "None":
upload_chat_to_drive(log_data, file_name)
def default_feedback():
return "None"
def default_text():
return ""
def save_text_feedback(feedback):
global text_feedback
text_feedback = feedback
curr_date = datetime.datetime.now()
file_name = f"chat_{curr_date.day}_{curr_date.month}_{curr_date.hour}_{curr_date.minute}_{curr_date.second}.csv"
log_data = [
["Question", "Response", "Model", "Time", "Feedback"],
[input_question, model_response, model_name, time_diff, text_feedback]
]
upload_chat_to_drive(log_data, file_name)
############################# Gradio Application Block #############################
with gr.Blocks(theme=gr.themes.Soft(primary_hue="emerald", neutral_hue="slate")) as chat:
gr.HTML(title)
global db
# PDF Drag and Drop + Drive link Input + Status containers
with gr.Row(equal_height=True):
with gr.Column():
with gr.Row():
pdf_files_dnd = gr.File(file_count='multiple', height=250, label="Upload PDF Files")
with gr.Column():
with gr.Row():
drive_link_input = gr.Textbox(lines=1, label="Enter your shared drive link, then press Enter...")
with gr.Row():
status_message = gr.Text(label="Status", value=DEFAULT_STATUS, text_align='center')
# What happens when PDF is uploaded or a drive link is submitted
drive_link_input.submit(
fn = create_data_from_drive,
inputs = [drive_link_input],
outputs = [status_message])
pdf_files_dnd.change(
fn=check_pdfs,
inputs=[pdf_files_dnd],
outputs=[status_message],
preprocess=False,
postprocess=False) # Set preprocess and postprocess to False, to avoid the tmpfile object creation, instead get a Dict
# Chatbot container
chatbot = gr.Chatbot(height=750)
msg = gr.Textbox(label="Send a message", placeholder="Send a message",
show_label=False, container=False)
with gr.Row():
with gr.Column():
clear_history_button = gr.ClearButton(value="Clear Chat History")
with gr.Column():
new_chat_button = gr.ClearButton(value="New Chat")
# Sample questions
with gr.Row():
with gr.Column():
gr.Examples([
["Explain these documents to me in simpler terms."],
["What does these documents talk about?"],
["Give the key topics covered in these documents in less than 10 words."],
["What are the key findings in these documents?"],
], inputs=msg, label= "Click on any example to copy in the chatbox"
)
# Feedback options container
with gr.Row():
with gr.Column():
feedback_radio = gr.Radio(
choices=["1", "2", "3", "4", "5", "6", "None"],
value=["None"],
label="On a scale from 1 (very unsatisfied) to 6 (very satisfied), how would you rate the current response?",
)
with gr.Column():
feedback_text = gr.Textbox(lines=1, label="Additional comments on the current response...")
# Get a response when a message is submitted to the chatbot
msg.submit(
fn = respond,
inputs = [msg, chatbot],
outputs = [msg, chatbot],
queue = True)
# Set default feedback to None after a message is submitted
msg.submit(
fn = default_feedback,
outputs=[feedback_radio],
queue = True
)
# Change whenever some feedback is given (Numeric or Text)
feedback_radio.change(
fn=save_feedback,
inputs=[feedback_radio]
)
feedback_text.submit(
fn=save_text_feedback,
inputs=[feedback_text],
queue=True
)
# Clear the text feedback after it is submitted
feedback_text.submit(
fn=default_text,
outputs=[feedback_text],
queue=True
)
# Clear the chat history/ New chat
clear_history_button.click(lambda: [None, None], outputs=[msg, chatbot])
new_chat_button.click(
lambda: [None, None, None, None, DEFAULT_STATUS, DEFAULT_NUM_FEEDBACK, DEFAULT_TEXT_FEEDBACK],
outputs=[msg, chatbot, pdf_files_dnd, drive_link_input, status_message, feedback_radio, feedback_text])
# Description at the bottom of the application
gr.HTML(description)
# Enable queing
chat.queue()
chat.launch() |