# Application file for Gradio App for OpenAI Model import gradio as gr import time import datetime import os from lc_base.chain import openai_chain from lc_base.dnd_database import create_dnd_database from driveapi.drive import upload_chat_to_drive from driveapi.drive_database import create_chroma_db ############################# Global Params ############################# time_diff = 0 # model_name="gpt-3.5-turbo-1106" # FOR TESTING # model_name = "gpt-4-1106-preview" model_name = "gpt-4-0125-preview" search_type = "stuff" input_question = "" model_response = "" user_feedback = "" dir = "" title = """

ResearchBuddy

""" description = """

This is a GPT based Research Buddy to assist in navigating new research topics.

""" DEFAULT_STATUS = "⬆️Submit a (shared) drive link containing only PDFs \n-or- \n⬅️Upload PDF files" DEFAULT_TEXT_FEEDBACK = "" DEFAULT_NUM_FEEDBACK = "None" ############################# Drive API specific function ############################# def create_data_from_drive(drive_link): global db drive_link += "?usp=sharing" os.environ['DRIVE_LINK'] = str(drive_link) print("Drive link saved in the environment! Creating Database...") db = create_chroma_db() return "Processing Completed - You can start the chat now!" ############################# Drag and Drop PDF processing ############################# def check_pdfs(pdf_files): global db db = create_dnd_database(pdf_files) if not db: return "Please upload PDF files again or submit a drive link containing only PDFs." else: return "Processing Completed - You can start the chat now!" ############################# Chatbot Specific functions ############################# def user(user_message, history): return "", history + [[user_message, None]] def respond(message, chat_history): global time_diff, model_response, input_question question = str(message) chain = openai_chain(inp_dir=dir) query = question start_time = time.time() output = chain.get_response_from_drive(query=query, database=db, k=10, model_name=model_name, type=search_type) # Update global variables for logging time_diff = time.time() - start_time model_response = output input_question = question save_text_feedback(feedback="Default Conversation Save!!!") # Upload chatlog to drive after every response irrespective of feedback bot_message = output chat_history.append((message, bot_message)) time.sleep(1) # Pause for a second to avoid overloading return " ", chat_history ############################# Feedback Specific functions ############################# def save_feedback(feedback): global user_feedback user_feedback = feedback curr_date = datetime.datetime.now() file_name = f"chat_{curr_date.day}_{curr_date.month}_{curr_date.hour}_{curr_date.minute}_{curr_date.second}.csv" log_data = [ ["Question", "Response", "Model", "Time", "Feedback"], [input_question, model_response, model_name, time_diff, user_feedback] ] if model_response and user_feedback[0] != "None": upload_chat_to_drive(log_data, file_name) def default_feedback(): return "None" def default_text(): return "" def save_text_feedback(feedback): global text_feedback text_feedback = feedback curr_date = datetime.datetime.now() file_name = f"chat_{curr_date.day}_{curr_date.month}_{curr_date.hour}_{curr_date.minute}_{curr_date.second}.csv" log_data = [ ["Question", "Response", "Model", "Time", "Feedback"], [input_question, model_response, model_name, time_diff, text_feedback] ] upload_chat_to_drive(log_data, file_name) ############################# Gradio Application Block ############################# with gr.Blocks(theme=gr.themes.Soft(primary_hue="emerald", neutral_hue="slate")) as chat: gr.HTML(title) global db # PDF Drag and Drop + Drive link Input + Status containers with gr.Row(equal_height=True): with gr.Column(): with gr.Row(): pdf_files_dnd = gr.File(file_count='multiple', height=250, label="Upload PDF Files") with gr.Column(): with gr.Row(): drive_link_input = gr.Textbox(lines=1, label="Enter your shared drive link, then press Enter...") with gr.Row(): status_message = gr.Text(label="Status", value=DEFAULT_STATUS, text_align='center') # What happens when PDF is uploaded or a drive link is submitted drive_link_input.submit( fn = create_data_from_drive, inputs = [drive_link_input], outputs = [status_message]) pdf_files_dnd.change( fn=check_pdfs, inputs=[pdf_files_dnd], outputs=[status_message], preprocess=False, postprocess=False) # Set preprocess and postprocess to False, to avoid the tmpfile object creation, instead get a Dict # Chatbot container chatbot = gr.Chatbot(height=750) msg = gr.Textbox(label="Send a message", placeholder="Send a message", show_label=False, container=False) with gr.Row(): with gr.Column(): clear_history_button = gr.ClearButton(value="Clear Chat History") with gr.Column(): new_chat_button = gr.ClearButton(value="New Chat") # Sample questions with gr.Row(): with gr.Column(): gr.Examples([ ["Explain these documents to me in simpler terms."], ["What does these documents talk about?"], ["Give the key topics covered in these documents in less than 10 words."], ["What are the key findings in these documents?"], ], inputs=msg, label= "Click on any example to copy in the chatbox" ) # Feedback options container with gr.Row(): with gr.Column(): feedback_radio = gr.Radio( choices=["1", "2", "3", "4", "5", "6", "None"], value=["None"], label="On a scale from 1 (very unsatisfied) to 6 (very satisfied), how would you rate the current response?", ) with gr.Column(): feedback_text = gr.Textbox(lines=1, label="Additional comments on the current response...") # Get a response when a message is submitted to the chatbot msg.submit( fn = respond, inputs = [msg, chatbot], outputs = [msg, chatbot], queue = True) # Set default feedback to None after a message is submitted msg.submit( fn = default_feedback, outputs=[feedback_radio], queue = True ) # Change whenever some feedback is given (Numeric or Text) feedback_radio.change( fn=save_feedback, inputs=[feedback_radio] ) feedback_text.submit( fn=save_text_feedback, inputs=[feedback_text], queue=True ) # Clear the text feedback after it is submitted feedback_text.submit( fn=default_text, outputs=[feedback_text], queue=True ) # Clear the chat history/ New chat clear_history_button.click(lambda: [None, None], outputs=[msg, chatbot]) new_chat_button.click( lambda: [None, None, None, None, DEFAULT_STATUS, DEFAULT_NUM_FEEDBACK, DEFAULT_TEXT_FEEDBACK], outputs=[msg, chatbot, pdf_files_dnd, drive_link_input, status_message, feedback_radio, feedback_text]) # Description at the bottom of the application gr.HTML(description) # Enable queing chat.queue() chat.launch()