# Application file for Gradio App for OpenAI Model
import gradio as gr
import time
import datetime
import os
from lc_base.chain import openai_chain
from lc_base.dnd_database import create_dnd_database
############################# Global Params #############################
time_diff = 0
# model_name="gpt-3.5-turbo-1106" # FOR TESTING
# model_name = "gpt-4-1106-preview"
model_name = "gpt-4o-mini-2024-07-18"
search_type = "stuff"
input_question = ""
model_response = ""
user_feedback = ""
dir = ""
title = """
ResearchBuddy
"""
description = """
This is a GPT based Research Buddy to assist in navigating new research topics.
"""
DEFAULT_STATUS = "⬆Upload PDF files"
############################# Drag and Drop PDF processing #############################
def check_pdfs(pdf_files):
global db
db = create_dnd_database(pdf_files)
if not db:
return "Please upload PDF files again or submit a drive link containing only PDFs."
else:
return "Processing Completed - You can start the chat now!"
############################# Chatbot Specific functions #############################
def user(user_message, history):
return "", history + [[user_message, None]]
def respond(message, chat_history):
global time_diff, model_response, input_question
question = str(message)
chain = openai_chain(inp_dir=dir)
query = question
start_time = time.time()
output = chain.get_response_from_drive(query=query, database=db, k=10, model_name=model_name, type=search_type)
# Update global variables for logging
time_diff = time.time() - start_time
model_response = output
input_question = question
bot_message = output
chat_history.append((message, bot_message))
time.sleep(1) # Pause for a second to avoid overloading
return " ", chat_history
############################# Gradio Application Block #############################
with gr.Blocks(theme=gr.themes.Soft(primary_hue="emerald", neutral_hue="slate")) as chat:
gr.HTML(title)
global db
# PDF Drag and Drop + Drive link Input + Status containers
with gr.Row(equal_height=True):
with gr.Column():
with gr.Row():
pdf_files_dnd = gr.File(file_count='multiple', height=250, label="Upload PDF Files")
with gr.Row():
status_message = gr.Text(label="Status", value=DEFAULT_STATUS, text_align='center')
pdf_files_dnd.change(
fn=check_pdfs,
inputs=[pdf_files_dnd],
outputs=[status_message],
preprocess=False,
postprocess=False) # Set preprocess and postprocess to False, to avoid the tmpfile object creation, instead get a Dict
# Chatbot container
chatbot = gr.Chatbot(height=750)
msg = gr.Textbox(label="Send a message", placeholder="Send a message",
show_label=False, container=False)
with gr.Row():
with gr.Column():
clear_history_button = gr.ClearButton(value="Clear Chat History")
with gr.Column():
new_chat_button = gr.ClearButton(value="New Chat")
# Sample questions
with gr.Row():
with gr.Column():
gr.Examples([
["Explain these documents to me in simpler terms."],
["What does these documents talk about?"],
["Give the key topics covered in these documents in less than 10 words."],
["What are the key findings in these documents?"],
], inputs=msg, label= "Click on any example to copy in the chatbox"
)
# Get a response when a message is submitted to the chatbot
msg.submit(
fn = respond,
inputs = [msg, chatbot],
outputs = [msg, chatbot],
queue = True)
# Clear the chat history/ New chat
clear_history_button.click(lambda: [None, None], outputs=[msg, chatbot])
new_chat_button.click(
lambda: [None, None, None, None, DEFAULT_STATUS],
outputs=[msg, chatbot, pdf_files_dnd, status_message])
# Description at the bottom of the application
gr.HTML(description)
# Enable queing
chat.queue()
chat.launch()