Spaces:
Sleeping
Sleeping
File size: 6,117 Bytes
9aed787 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
## Working Grid environment
import gym
from gym import spaces
import pygame
import numpy as np
class GridWorldEnv(gym.Env):
metadata = {"render_modes": ["human", "rgb_array"], "render_fps": 2}
def __init__(self, render_mode=None, size=5, grid_info=None, agent_pos=None, target_pos=None):
self.size = size # The size of the square grid
self.window_size = 500 # The size of the PyGame window
self.grid_info = grid_info
self.agent_pos = agent_pos
self.target_pos = target_pos
# Observations are dictionaries with the agent's and the target's location.
# Each location is encoded as an element of {0, ..., `size`}^2, i.e. MultiDiscrete([size, size]).
self.observation_space = spaces.Dict(
{
"agent": spaces.Box(0, size - 1, shape=(2,), dtype=int),
"target": spaces.Box(0, size - 1, shape=(2,), dtype=int),
}
)
# We have 5 actions, corresponding to "right", "up", "left", "down", "wait" and "grip".
self.action_space = spaces.Discrete(6)
"""
The following dictionary maps abstract actions from `self.action_space` to
the direction we will walk in if that action is taken.
I.e. 0 corresponds to "right", 1 to "up" etc.
"""
self._action_to_direction = {
0: np.array([1, 0]), # Right
1: np.array([0, 1]), # Down
2: np.array([-1, 0]), # Left
3: np.array([0, -1]), # Up
4: np.array([0, 0]),
5: np.array([1, 1])
}
assert render_mode is None or render_mode in self.metadata["render_modes"]
self.render_mode = render_mode
"""
If human-rendering is used, `self.window` will be a reference
to the window that we draw to. `self.clock` will be a clock that is used
to ensure that the environment is rendered at the correct framerate in
human-mode. They will remain `None` until human-mode is used for the
first time.
"""
self.window = None
self.clock = None
def _get_obs(self):
return {"agent": self._agent_location, "target": self._target_location}
def _get_info(self):
return {"distance": np.linalg.norm(self._agent_location - self._target_location, ord=1)}
def reset(self, seed=None, options=None):
# We need the following line to seed self.np_random
# super().reset(seed=seed)
self._agent_location = self.agent_pos
self._target_location = self.target_pos
observation = self._get_obs()
info = self._get_info()
if self.render_mode == "human":
self._render_frame()
return observation, info
def step(self, action):
# Map the action (element of {0,1,2,3}) to the direction we walk in
direction = self._action_to_direction[action]
# We use `np.clip` to make sure we don't leave the grid
self._agent_location = np.clip(
self._agent_location + direction, 0, self.size - 1
)
# An episode is done if the agent has reached the target
# terminated = np.array_equal(self._agent_location, self._target_location)
terminated = 0
for i in range(len(self.target_pos)):
if np.array_equal(self.agent_pos, self.target_pos[i]):
terminated = 1
reward = 1 if terminated else 0 # Binary sparse rewards
observation = self._get_obs()
info = self._get_info()
if self.render_mode == "human":
self._render_frame()
return observation, reward, terminated, info
def render(self):
if self.render_mode == "rgb_array":
return self._render_frame()
def _draw_rect(self, canvas, color, pos, pix_square_size):
# Ensure pos is a tuple of integers
if not isinstance(pos, (tuple, list)):
pos = list(pos)
pygame.draw.rect(
canvas,
color,
pygame.Rect(
pix_square_size * np.array(pos), # Ensure pos is multiplied correctly
(pix_square_size, pix_square_size),
),
)
def _render_frame(self):
if self.window is None and self.render_mode == "human":
pygame.init()
pygame.display.init()
self.window = pygame.display.set_mode((self.window_size, self.window_size))
if self.clock is None and self.render_mode == "human":
self.clock = pygame.time.Clock()
canvas = pygame.Surface((self.window_size, self.window_size))
canvas.fill((255, 255, 255))
pix_square_size = int(
self.window_size / self.size
) # The size of a single grid square in pixels
# Draw Pieces
for piece in self.grid_info:
for pos in piece["piece_grids"]:
self._draw_rect(canvas, piece["piece_colour"], pos, pix_square_size)
# Now we draw the agent
pygame.draw.circle(
canvas,
(0, 0, 0),
(self._agent_location + 0.5) * pix_square_size,
pix_square_size / 3,
)
if self.render_mode == "human":
# The following line copies our drawings from `canvas` to the visible window
self.window.blit(canvas, canvas.get_rect())
pygame.event.pump()
pygame.display.update()
# We need to ensure that human-rendering occurs at the predefined framerate.
# The following line will automatically add a delay to keep the framerate stable.
self.clock.tick(self.metadata["render_fps"])
else: # rgb_array
return np.transpose(
np.array(pygame.surfarray.pixels3d(canvas)), axes=(1, 0, 2)
)
def close(self):
if self.window is not None:
pygame.display.quit()
pygame.quit()
if __name__ == '__main__':
env = GridWorldEnv(size=20)
env.reset()
env.render()
env.close() |