import torch import whisper import torchaudio as ta from model_utils import get_processor, get_model, get_whisper_model_small, get_device from config import SAMPLING_RATE, CHUNK_LENGTH_S def detect_language(audio_file): whisper_model = get_whisper_model_small() trimmed_audio = whisper.pad_or_trim(audio_file.squeeze()) mel = whisper.log_mel_spectrogram(trimmed_audio).to(whisper_model.device) _, probs = whisper_model.detect_language(mel) detected_lang = max(probs[0], key=probs[0].get) print(f"Detected language: {detected_lang}") return detected_lang def process_long_audio(waveform, sampling_rate, task="transcribe", language=None): processor = get_processor() model = get_model() device = get_device() input_length = waveform.shape[1] chunk_length = int(CHUNK_LENGTH_S * sampling_rate) chunks = [waveform[:, i:i + chunk_length] for i in range(0, input_length, chunk_length)] results = [] for chunk in chunks: input_features = processor(chunk[0], sampling_rate=sampling_rate, return_tensors="pt").input_features.to(device) with torch.no_grad(): if task == "translate": forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="translate") generated_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) else: generated_ids = model.generate(input_features) transcription = processor.batch_decode(generated_ids, skip_special_tokens=True) results.extend(transcription) # Clear GPU cache torch.cuda.empty_cache() return " ".join(results) def load_and_resample_audio(file): waveform, sampling_rate = ta.load(file) if sampling_rate != SAMPLING_RATE: waveform = ta.functional.resample(waveform, orig_freq=sampling_rate, new_freq=SAMPLING_RATE) return waveform