File size: 4,777 Bytes
f36e52e
 
 
 
 
7dccca6
f36e52e
 
 
 
 
 
 
7dccca6
f36e52e
 
 
 
 
 
e30002c
f36e52e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e30002c
f36e52e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e30002c
f36e52e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import whisper
import numpy as np
import torchaudio as ta
import gradio as gr
import spaces
from model_utils import get_processor, get_model, get_whisper_model_small, get_device
from config import SAMPLING_RATE, CHUNK_LENGTH_S
import subprocess

import subprocess
import torchaudio as ta


def resample_with_ffmpeg(input_file, output_file, target_sr=16000):
    command = [
        'ffmpeg', '-i', input_file, '-ar', str(target_sr), output_file
    ]
    subprocess.run(command, check=True)

@spaces.GPU
def detect_language(audio):
    whisper_model = get_whisper_model_small()
    
    # Save the input audio to a temporary file
    ta.save("input_audio.wav", torch.tensor(audio[1]).unsqueeze(0), audio[0])
    
    # Resample if necessary using ffmpeg
    if audio[0] != SAMPLING_RATE:
        resample_with_ffmpeg("input_audio.wav", "resampled_audio.wav", target_sr=SAMPLING_RATE)
        audio_tensor, _ = ta.load("resampled_audio.wav")
    else:
        audio_tensor = torch.tensor(audio[1]).float()
    
    # Ensure the audio is in the correct shape (mono)
    if audio_tensor.dim() == 2:
        audio_tensor = audio_tensor.mean(dim=0)
    
    # Use Whisper's preprocessing
    audio_tensor = whisper.pad_or_trim(audio_tensor)
    print(f"Audio length after pad/trim: {audio_tensor.shape[-1] / SAMPLING_RATE} seconds")
    mel = whisper.log_mel_spectrogram(audio_tensor).to(whisper_model.device)
    
    # Detect language
    _, probs = whisper_model.detect_language(mel)
    detected_lang = max(probs, key=probs.get)
    
    print(f"Audio shape: {audio_tensor.shape}")
    print(f"Mel spectrogram shape: {mel.shape}")
    print(f"Detected language: {detected_lang}")
    print("Language probabilities:", probs)

    return detected_lang


@spaces.GPU
def process_long_audio(audio, task="transcribe", language=None):
    if audio[0] != SAMPLING_RATE:
        # Save the input audio to a file for ffmpeg processing
        ta.save("input_audio_1.wav", torch.tensor(audio[1]).unsqueeze(0), audio[0])

        # Resample using ffmpeg
        try:
            resample_with_ffmpeg("input_audio_1.wav", "resampled_audio_2.wav", target_sr=SAMPLING_RATE)
        except subprocess.CalledProcessError as e:
            print(f"ffmpeg failed: {e.stderr}")
            raise e

        waveform, _ = ta.load("resampled_audio_2.wav")
    else:
        waveform = torch.tensor(audio[1]).float()
    
    # Ensure the audio is in the correct shape (mono)
    if waveform.dim() == 2:
        waveform = waveform.mean(dim=0)
    
    print(f"Waveform shape after processing: {waveform.shape}")

    if waveform.numel() == 0:
        raise ValueError("Waveform is empty. Please check the input audio file.")

    input_length = waveform.shape[0]  # Since waveform is 1D, access the length with shape[0]
    chunk_length = int(CHUNK_LENGTH_S * SAMPLING_RATE)

    # Corrected slicing for 1D tensor
    chunks = [waveform[i:i + chunk_length] for i in range(0, input_length, chunk_length)]

    # Initialize the processor
    processor = get_processor()
    model = get_model()
    device = get_device()

    results = []
    for chunk in chunks:
        input_features = processor(chunk, sampling_rate=SAMPLING_RATE, return_tensors="pt").input_features.to(device)

        with torch.no_grad():
            if task == "translate":
                forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="translate")
                generated_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
            else:
                generated_ids = model.generate(input_features)

        transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
        results.extend(transcription)

        # Clear GPU cache
        torch.cuda.empty_cache()

    return " ".join(results)


@spaces.GPU
def process_audio(audio):
    if audio is None:
        return "No file uploaded", "", ""
    
    detected_lang = detect_language(audio)
    transcription = process_long_audio(audio, task="transcribe")
    translation = process_long_audio(audio, task="translate", language=detected_lang)
    
    return detected_lang, transcription, translation

# Gradio interface
iface = gr.Interface(
    fn=process_audio,
    inputs=gr.Audio(),
    outputs=[
        gr.Textbox(label="Detected Language"),
        gr.Textbox(label="Transcription", lines=5),
        gr.Textbox(label="Translation", lines=5)
    ],
    title="Audio Transcription and Translation",
    description="Upload an audio file to detect its language, transcribe, and translate it.",
    allow_flagging="never",
    css=".output-textbox { font-family: 'Noto Sans Devanagari', sans-serif; font-size: 18px; }"
)

if __name__ == "__main__":
    iface.launch()