Spaces:
Build error
Build error
File size: 5,988 Bytes
f36e52e 61f17b6 f36e52e 61f17b6 f36e52e 0fd738e 61f17b6 f36e52e 61f17b6 f36e52e 3e497df f36e52e 36abecf 3e497df 0fd738e 3e497df 0fd738e 3e497df 0fd738e 3e497df 36abecf f36e52e 6c36e37 f36e52e 6c36e37 f36e52e 6c36e37 f36e52e 6c36e37 f36e52e 6c36e37 f36e52e 6c36e37 f36e52e 36abecf f36e52e 43f1b5e f36e52e 36abecf f36e52e 6c36e37 f36e52e 6c36e37 f36e52e 6c36e37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import torch
import spaces
import whisper
import subprocess
import numpy as np
import gradio as gr
import soundfile as sf
import torchaudio as ta
from model_utils import get_processor, get_model, get_whisper_model_small, get_device
from config import SAMPLING_RATE, CHUNK_LENGTH_S
# def resample_with_ffmpeg(input_file, output_file, target_sr=16000):
# command = [
# 'ffmpeg', '-i', input_file, '-ar', str(target_sr), output_file
# ]
# subprocess.run(command, check=True)
@spaces.GPU
def load_and_resample_audio(file):
try:
# First attempt: Use torchaudio.load()
waveform, sample_rate = torchaudio.load(file)
except Exception as e:
print(f"torchaudio.load() failed: {e}")
try:
# Second attempt: Use soundfile
waveform, sample_rate = sf.read(file)
waveform = torch.from_numpy(waveform.T).float()
if waveform.dim() == 1:
waveform = waveform.unsqueeze(0)
except Exception as e:
print(f"soundfile.read() failed: {e}")
raise ValueError(f"Failed to load audio file: {file}")
print(f"Original audio shape: {waveform.shape}, Sample rate: {sample_rate}")
if sample_rate != SAMPLING_RATE:
try:
waveform = F.resample(waveform, sample_rate, SAMPLING_RATE)
except Exception as e:
print(f"Resampling failed: {e}")
raise ValueError(f"Failed to resample audio from {sample_rate} to {SAMPLING_RATE}")
# Ensure the audio is in the correct shape (mono)
if waveform.dim() > 1 and waveform.shape[0] > 1:
waveform = waveform.mean(dim=0, keepdim=True)
print(f"Processed audio shape: {waveform.shape}, New sample rate: {SAMPLING_RATE}")
return waveform, SAMPLING_RATE
@spaces.GPU
def detect_language(audio):
whisper_model = get_whisper_model_small()
# Save the input audio to a temporary file
ta.save("input_audio.wav", torch.tensor(audio[1]).unsqueeze(0), audio[0])
# Resample if necessary using ffmpeg
if audio[0] != SAMPLING_RATE:
resample_with_ffmpeg("input_audio.wav", "resampled_audio.wav", target_sr=SAMPLING_RATE)
audio_tensor, _ = ta.load("resampled_audio.wav")
else:
audio_tensor = torch.tensor(audio[1]).float()
# Ensure the audio is in the correct shape (mono)
if audio_tensor.dim() == 2:
audio_tensor = audio_tensor.mean(dim=0)
# Use Whisper's preprocessing
audio_tensor = whisper.pad_or_trim(audio_tensor)
print(f"Audio length after pad/trim: {audio_tensor.shape[-1] / SAMPLING_RATE} seconds")
mel = whisper.log_mel_spectrogram(audio_tensor).to(whisper_model.device)
# Detect language
_, probs = whisper_model.detect_language(mel)
detected_lang = max(probs, key=probs.get)
print(f"Audio shape: {audio_tensor.shape}")
print(f"Mel spectrogram shape: {mel.shape}")
print(f"Detected language: {detected_lang}")
print("Language probabilities:", probs)
return detected_lang
@spaces.GPU
def process_long_audio(audio, task="transcribe", language=None):
if audio[0] != SAMPLING_RATE:
# Save the input audio to a file for ffmpeg processing
ta.save("input_audio_1.wav", torch.tensor(audio[1]).unsqueeze(0), audio[0])
# Resample using ffmpeg
try:
resample_with_ffmpeg("input_audio_1.wav", "resampled_audio_2.wav", target_sr=SAMPLING_RATE)
except subprocess.CalledProcessError as e:
print(f"ffmpeg failed: {e.stderr}")
raise e
waveform, _ = ta.load("resampled_audio_2.wav")
else:
waveform = torch.tensor(audio[1]).float()
# Ensure the audio is in the correct shape (mono)
if waveform.dim() == 2:
waveform = waveform.mean(dim=0)
print(f"Waveform shape after processing: {waveform.shape}")
if waveform.numel() == 0:
raise ValueError("Waveform is empty. Please check the input audio file.")
input_length = waveform.shape[0] # Since waveform is 1D, access the length with shape[0]
chunk_length = int(CHUNK_LENGTH_S * SAMPLING_RATE)
# Corrected slicing for 1D tensor
chunks = [waveform[i:i + chunk_length] for i in range(0, input_length, chunk_length)]
# Initialize the processor
processor = get_processor()
model = get_model()
device = get_device()
results = []
for chunk in chunks:
input_features = processor(chunk, sampling_rate=SAMPLING_RATE, return_tensors="pt").input_features.to(device)
with torch.no_grad():
if task == "translate":
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="translate")
generated_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
else:
generated_ids = model.generate(input_features)
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
results.extend(transcription)
# Clear GPU cache
torch.cuda.empty_cache()
return " ".join(results)
@spaces.GPU
def process_audio(audio):
if audio is None:
return "No file uploaded", "", ""
detected_lang = detect_language(audio)
transcription = process_long_audio(audio, task="transcribe")
translation = process_long_audio(audio, task="translate", language=detected_lang)
return detected_lang, transcription, translation
# Gradio interface
iface = gr.Interface(
fn=process_audio,
inputs=gr.Audio(),
outputs=[
gr.Textbox(label="Detected Language"),
gr.Textbox(label="Transcription", lines=5),
gr.Textbox(label="Translation", lines=5)
],
title="Audio Transcription and Translation",
description="Upload an audio file to detect its language, transcribe, and translate it.",
allow_flagging="never",
css=".output-textbox { font-family: 'Noto Sans Devanagari', sans-serif; font-size: 18px; }"
) |