ASR_gradio / app.py
Kr08's picture
Update app.py
3a346c4 verified
raw
history blame
5.43 kB
import gradio as gr
from audio_processing import process_audio, load_models
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForQuestionAnswering
import spaces
import torch
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Check if CUDA is available
cuda_available = torch.cuda.is_available()
device = "cuda" if cuda_available else "cpu"
logger.info(f"Using device: {device}")
# Load models globally
print("Loading models...")
try:
load_models() # Load Whisper and diarization models
except Exception as e:
logger.error(f"Error loading Whisper and diarization models: {str(e)}")
raise
try:
summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn").to(device)
summarizer_tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
except Exception as e:
logger.error(f"Error loading summarization model: {str(e)}")
raise
try:
qa_model = AutoModelForQuestionAnswering.from_pretrained("distilbert-base-cased-distilled-squad").to(device)
qa_tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased-distilled-squad")
except Exception as e:
logger.error(f"Error loading QA model: {str(e)}")
raise
print("Models loaded successfully.")
@spaces.GPU
def transcribe_audio(audio_file, translate, model_size):
language_segments, final_segments = process_audio(audio_file, translate=translate, model_size=model_size)
output = "Detected language changes:\n\n"
for segment in language_segments:
output += f"Language: {segment['language']}\n"
output += f"Time: {segment['start']:.2f}s - {segment['end']:.2f}s\n\n"
output += f"Transcription with language detection and speaker diarization (using {model_size} model):\n\n"
full_text = ""
for segment in final_segments:
output += f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']}) {segment['speaker']}:\n"
output += f"Original: {segment['text']}\n"
if translate:
output += f"Translated: {segment['translated']}\n"
full_text += segment['translated'] + " "
else:
full_text += segment['text'] + " "
output += "\n"
return output, full_text
@spaces.GPU
def summarize_text(text):
inputs = summarizer_tokenizer(text, max_length=1024, truncation=True, return_tensors="pt").to(device)
summary_ids = summarizer_model.generate(inputs["input_ids"], max_length=150, min_length=50, do_sample=False)
summary = summarizer_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
@spaces.GPU
def answer_question(context, question):
inputs = qa_tokenizer(question, context, return_tensors="pt").to(device)
outputs = qa_model(**inputs)
answer_start = torch.argmax(outputs.start_logits)
answer_end = torch.argmax(outputs.end_logits) + 1
answer = qa_tokenizer.decode(inputs["input_ids"][0][answer_start:answer_end])
return answer
@spaces.GPU
def process_and_summarize(audio_file, translate, model_size):
transcription, full_text = transcribe_audio(audio_file, translate, model_size)
summary = summarize_text(full_text)
return transcription, summary
@spaces.GPU
def qa_interface(audio_file, translate, model_size, question):
_, full_text = transcribe_audio(audio_file, translate, model_size)
answer = answer_question(full_text, question)
return answer
# Main interface
with gr.Blocks() as iface:
gr.Markdown("# WhisperX Audio Transcription, Translation, Summarization, and QA (with ZeroGPU support)")
with gr.Tab("Transcribe and Summarize"):
audio_input = gr.Audio(type="filepath")
translate_checkbox = gr.Checkbox(label="Enable Translation")
model_dropdown = gr.Dropdown(choices=["tiny", "base", "small", "medium", "large", "large-v2", "large-v3"], label="Whisper Model Size", value="small")
transcribe_button = gr.Button("Transcribe and Summarize")
transcription_output = gr.Textbox(label="Transcription")
summary_output = gr.Textbox(label="Summary")
transcribe_button.click(
process_and_summarize,
inputs=[audio_input, translate_checkbox, model_dropdown],
outputs=[transcription_output, summary_output]
)
with gr.Tab("Question Answering"):
qa_audio_input = gr.Audio(type="filepath")
qa_translate_checkbox = gr.Checkbox(label="Enable Translation")
qa_model_dropdown = gr.Dropdown(choices=["tiny", "base", "small", "medium", "large", "large-v2", "large-v3"], label="Whisper Model Size", value="small")
question_input = gr.Textbox(label="Ask a question about the audio")
qa_button = gr.Button("Get Answer")
answer_output = gr.Textbox(label="Answer")
qa_button.click(
qa_interface,
inputs=[qa_audio_input, qa_translate_checkbox, qa_model_dropdown, question_input],
outputs=answer_output
)
gr.Markdown(
f"""
## System Information
- Device: {device}
- CUDA Available: {"Yes" if cuda_available else "No"}
## ZeroGPU Support
This application supports ZeroGPU for Hugging Face Spaces pro users.
GPU-intensive tasks are automatically optimized for better performance when available.
"""
)
iface.launch()