Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from audio_processing import process_audio,
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForQuestionAnswering
|
4 |
import spaces
|
5 |
import torch
|
@@ -19,6 +19,7 @@ qa_model = AutoModelForQuestionAnswering.from_pretrained("distilbert-base-cased-
|
|
19 |
qa_tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased-distilled-squad")
|
20 |
print("Models loaded successfully.")
|
21 |
|
|
|
22 |
@spaces.GPU
|
23 |
def transcribe_audio(audio_file, translate, model_size):
|
24 |
language_segments, final_segments = process_audio(audio_file, translate=translate, model_size=model_size)
|
@@ -42,6 +43,7 @@ def transcribe_audio(audio_file, translate, model_size):
|
|
42 |
|
43 |
return output, full_text
|
44 |
|
|
|
45 |
@spaces.GPU
|
46 |
def summarize_text(text):
|
47 |
inputs = summarizer_tokenizer(text, max_length=1024, truncation=True, return_tensors="pt").to(device)
|
@@ -49,6 +51,7 @@ def summarize_text(text):
|
|
49 |
summary = summarizer_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
50 |
return summary
|
51 |
|
|
|
52 |
@spaces.GPU
|
53 |
def answer_question(context, question):
|
54 |
inputs = qa_tokenizer(question, context, return_tensors="pt").to(device)
|
@@ -58,18 +61,21 @@ def answer_question(context, question):
|
|
58 |
answer = qa_tokenizer.decode(inputs["input_ids"][0][answer_start:answer_end])
|
59 |
return answer
|
60 |
|
|
|
61 |
@spaces.GPU
|
62 |
def process_and_summarize(audio_file, translate, model_size):
|
63 |
transcription, full_text = transcribe_audio(audio_file, translate, model_size)
|
64 |
summary = summarize_text(full_text)
|
65 |
return transcription, summary
|
66 |
|
|
|
67 |
@spaces.GPU
|
68 |
def qa_interface(audio_file, translate, model_size, question):
|
69 |
_, full_text = transcribe_audio(audio_file, translate, model_size)
|
70 |
answer = answer_question(full_text, question)
|
71 |
return answer
|
72 |
|
|
|
73 |
# Main interface
|
74 |
with gr.Blocks() as iface:
|
75 |
gr.Markdown("# WhisperX Audio Transcription, Translation, Summarization, and QA (with ZeroGPU support)")
|
|
|
1 |
import gradio as gr
|
2 |
+
from audio_processing import process_audio, load_models
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForQuestionAnswering
|
4 |
import spaces
|
5 |
import torch
|
|
|
19 |
qa_tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased-distilled-squad")
|
20 |
print("Models loaded successfully.")
|
21 |
|
22 |
+
|
23 |
@spaces.GPU
|
24 |
def transcribe_audio(audio_file, translate, model_size):
|
25 |
language_segments, final_segments = process_audio(audio_file, translate=translate, model_size=model_size)
|
|
|
43 |
|
44 |
return output, full_text
|
45 |
|
46 |
+
|
47 |
@spaces.GPU
|
48 |
def summarize_text(text):
|
49 |
inputs = summarizer_tokenizer(text, max_length=1024, truncation=True, return_tensors="pt").to(device)
|
|
|
51 |
summary = summarizer_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
52 |
return summary
|
53 |
|
54 |
+
|
55 |
@spaces.GPU
|
56 |
def answer_question(context, question):
|
57 |
inputs = qa_tokenizer(question, context, return_tensors="pt").to(device)
|
|
|
61 |
answer = qa_tokenizer.decode(inputs["input_ids"][0][answer_start:answer_end])
|
62 |
return answer
|
63 |
|
64 |
+
|
65 |
@spaces.GPU
|
66 |
def process_and_summarize(audio_file, translate, model_size):
|
67 |
transcription, full_text = transcribe_audio(audio_file, translate, model_size)
|
68 |
summary = summarize_text(full_text)
|
69 |
return transcription, summary
|
70 |
|
71 |
+
|
72 |
@spaces.GPU
|
73 |
def qa_interface(audio_file, translate, model_size, question):
|
74 |
_, full_text = transcribe_audio(audio_file, translate, model_size)
|
75 |
answer = answer_question(full_text, question)
|
76 |
return answer
|
77 |
|
78 |
+
|
79 |
# Main interface
|
80 |
with gr.Blocks() as iface:
|
81 |
gr.Markdown("# WhisperX Audio Transcription, Translation, Summarization, and QA (with ZeroGPU support)")
|