Kr08 commited on
Commit
31ac823
·
verified ·
1 Parent(s): 2e79a3d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +108 -65
app.py CHANGED
@@ -1,85 +1,128 @@
1
- import yfinance as yf
 
2
  import pandas as pd
 
 
 
 
3
  import plotly.graph_objects as go
4
- import gradio as gr
5
  from datetime import date, timedelta
 
 
 
 
 
6
  from dateutil.relativedelta import relativedelta
7
 
8
- # ... (keep the existing imports and global variables)
 
 
9
 
10
- def get_company_info(ticker):
11
- stock = yf.Ticker(ticker)
12
- info = stock.info
13
-
14
- # Select relevant fundamental information
15
- fundamentals = {
16
- "Company Name": info.get("longName", "N/A"),
17
- "Sector": info.get("sector", "N/A"),
18
- "Industry": info.get("industry", "N/A"),
19
- "Market Cap": f"${info.get('marketCap', 'N/A'):,}",
20
- "P/E Ratio": round(info.get("trailingPE", 0), 2),
21
- "EPS": round(info.get("trailingEps", 0), 2),
22
- "52 Week High": f"${info.get('fiftyTwoWeekHigh', 'N/A'):,}",
23
- "52 Week Low": f"${info.get('fiftyTwoWeekLow', 'N/A'):,}",
24
- "Dividend Yield": f"{info.get('dividendYield', 0) * 100:.2f}%",
25
- "Beta": round(info.get("beta", 0), 2),
26
- }
27
-
28
- return pd.DataFrame(list(fundamentals.items()), columns=['Metric', 'Value'])
29
 
30
- def get_stock_graph_and_info(idx, stock, interval, graph_type, forecast_method):
31
- stock_name, ticker_name = stock.split(":")
32
-
33
- if ticker_dict[idx] == 'FTSE 100':
34
- ticker_name += '.L' if ticker_name[-1] != '.' else 'L'
35
- elif ticker_dict[idx] == 'CAC 40':
36
- ticker_name += '.PA'
37
 
38
- # Get stock price data
39
- series = yf.download(tickers=ticker_name, start=START_DATE, end=END_DATE, interval=interval)
40
- series = series.reset_index()
41
 
42
- # Generate forecast
43
- predictions = forecast_series(series, model=forecast_method)
44
-
45
- # ... (keep the existing forecast date generation code)
 
 
46
 
47
- # Create graph
48
- if graph_type == 'Line Graph':
49
- fig = go.Figure()
50
- fig.add_trace(go.Scatter(x=series['Date'], y=series['Close'], mode='lines', name='Historical'))
51
- fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
52
- else: # Candlestick Graph
53
- fig = go.Figure(data=[go.Candlestick(x=series['Date'],
54
- open=series['Open'],
55
- high=series['High'],
56
- low=series['Low'],
57
- close=series['Close'],
58
- name='Historical')])
59
- fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
 
 
 
 
 
 
60
 
61
- fig.update_layout(title=f"Stock Price of {stock_name}",
62
- xaxis_title="Date",
63
- yaxis_title="Price")
64
 
65
- # Get fundamental information
66
- fundamentals = get_company_info(ticker_name)
67
 
68
- return fig, fundamentals
69
 
70
- # Update the Gradio interface
71
- with demo:
72
- # ... (keep the existing input components)
 
 
 
73
 
74
- out_graph = gr.Plot()
75
- out_fundamentals = gr.DataFrame()
76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  inputs = [d1, d2, d3, d4, d5]
78
- outputs = [out_graph, out_fundamentals]
 
 
 
79
 
80
- d2.input(get_stock_graph_and_info, inputs, outputs)
81
- d3.input(get_stock_graph_and_info, inputs, outputs)
82
- d4.input(get_stock_graph_and_info, inputs, outputs)
83
- d5.input(get_stock_graph_and_info, inputs, outputs)
84
 
85
  demo.launch()
 
1
+ import datetime
2
+ import gradio as gr
3
  import pandas as pd
4
+ import yfinance as yf
5
+ import seaborn as sns
6
+ sns.set()
7
+ import matplotlib.pyplot as plt
8
  import plotly.graph_objects as go
9
+
10
  from datetime import date, timedelta
11
+ from matplotlib import pyplot as plt
12
+ from plotly.subplots import make_subplots
13
+ from pytickersymbols import PyTickerSymbols
14
+ from statsmodels.tsa.arima.model import ARIMA
15
+ from pandas.plotting import autocorrelation_plot
16
  from dateutil.relativedelta import relativedelta
17
 
18
+ index_options = ['FTSE 100(UK)', 'NASDAQ(USA)', 'CAC 40(FRANCE)']
19
+ ticker_dict = {'FTSE 100(UK)': 'FTSE 100', 'NASDAQ(USA)': 'NASDAQ 100', 'CAC 40(FRANCE)': 'CAC 40'}
20
+ time_intervals = ['1d', '1m', '5m', '15m', '60m']
21
 
22
+ global START_DATE, END_DATE
23
+ END_DATE = date.today()
24
+ START_DATE = END_DATE - relativedelta(years=1)
25
+ FORECAST_PERIOD = 7
26
+ demo = gr.Blocks()
27
+ stock_names = []
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
 
 
 
 
 
 
 
29
 
 
 
 
30
 
31
+ with demo:
32
+ d1 = gr.Dropdown(index_options, label='Please select Index...', info='Will be adding more indices later on', interactive=True)
33
+ d2 = gr.Dropdown([], label='Please Select Stock from your selected index', interactive=True)
34
+ d3 = gr.Dropdown(time_intervals, label='Select Time Interval', value='1d', interactive=True)
35
+ d4 = gr.Radio(['Line Graph', 'Candlestick Graph'], label='Select Graph Type', value='Line Graph', interactive=True)
36
+ d5 = gr.Dropdown(['ARIMA', 'Prophet', 'LSTM'], label='Select Forecasting Method', value='ARIMA', interactive=True)
37
 
38
+ def forecast_series(series, model="ARIMA", forecast_period=7):
39
+ predictions = list()
40
+ if series.shape[1] > 1:
41
+ series = series['Close'].values.tolist()
42
+
43
+ if model == "ARIMA":
44
+ for i in range(forecast_period):
45
+ model = ARIMA(series, order=(5, 1, 0))
46
+ model_fit = model.fit()
47
+ output = model_fit.forecast()
48
+ yhat = output[0]
49
+ predictions.append(yhat)
50
+ series.append(yhat)
51
+ elif model == "Prophet":
52
+ # Implement Prophet forecasting method
53
+ pass
54
+ elif model == "LSTM":
55
+ # Implement LSTM forecasting method
56
+ pass
57
 
58
+ return predictions
 
 
59
 
60
+ def is_business_day(a_date):
61
+ return a_date.weekday() < 5
62
 
 
63
 
64
+ def get_stocks_from_index(idx):
65
+ stock_data = PyTickerSymbols()
66
+ index = ticker_dict[idx]
67
+ stocks = list(stock_data.get_stocks_by_index(index))
68
+ stock_names = [f"{stock['name']}:{stock['symbol']}" for stock in stocks]
69
+ return gr.Dropdown(choices=stock_names, label='Please Select Stock from your selected index', interactive=True)
70
 
 
 
71
 
72
+ d1.input(get_stocks_from_index, d1, d2)
73
+
74
+ def get_stock_graph(idx, stock, interval, graph_type, forecast_method):
75
+ stock_name, ticker_name = stock.split(":")
76
+
77
+ if ticker_dict[idx] == 'FTSE 100':
78
+ ticker_name += '.L' if ticker_name[-1] != '.' else 'L'
79
+ elif ticker_dict[idx] == 'CAC 40':
80
+ ticker_name += '.PA'
81
+
82
+ series = yf.download(tickers=ticker_name, start=START_DATE, end=END_DATE, interval=interval)
83
+ series = series.reset_index()
84
+
85
+ predictions = forecast_series(series, model=forecast_method)
86
+
87
+ last_date = pd.to_datetime(series['Date'].values[-1])
88
+ forecast_week = []
89
+ i = 1
90
+ while len(forecast_week) < FORECAST_PERIOD:
91
+ next_date = last_date + timedelta(days=i)
92
+ if is_business_day(next_date):
93
+ forecast_week.append(next_date)
94
+ i += 1
95
+
96
+ # Ensure predictions and forecast_week have the same length
97
+ predictions = predictions[:len(forecast_week)]
98
+ forecast_week = forecast_week[:len(predictions)]
99
+
100
+ forecast = pd.DataFrame({"Date": forecast_week, "Forecast": predictions})
101
+
102
+ if graph_type == 'Line Graph':
103
+ fig = go.Figure()
104
+ fig.add_trace(go.Scatter(x=series['Date'], y=series['Close'], mode='lines', name='Historical'))
105
+ fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
106
+ else: # Candlestick Graph
107
+ fig = go.Figure(data=[go.Candlestick(x=series['Date'],
108
+ open=series['Open'],
109
+ high=series['High'],
110
+ low=series['Low'],
111
+ close=series['Close'],
112
+ name='Historical')])
113
+ fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
114
+
115
+ fig.update_layout(title=f"Stock Price of {stock_name}",
116
+ xaxis_title="Date",
117
+ yaxis_title="Price")
118
+
119
+ return fig
120
+ out = gr.Plot()
121
  inputs = [d1, d2, d3, d4, d5]
122
+ d2.input(get_stock_graph, inputs, out)
123
+ d3.input(get_stock_graph, inputs, out)
124
+ d4.input(get_stock_graph, inputs, out)
125
+ d5.input(get_stock_graph, inputs, out)
126
 
 
 
 
 
127
 
128
  demo.launch()