TobDeBer's picture
add negative prompt
81d0a4c verified
raw
history blame
2.55 kB
from diffusers import AutoPipelineForText2Image, StableDiffusionImg2ImgPipeline
from PIL import Image
import gradio as gr
import random
import torch
import math
css = """
.btn-green {
background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important;
border-color: #22c55e !important;
color: #166534 !important;
}
.btn-green:hover {
background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important;
}
"""
def generate(prompt, turbo_steps, samp_steps, seed, progress=gr.Progress(track_tqdm=True), negative_prompt = ""):
print("prompt = ", prompt)
print("negative prompt = ", negative_prompt)
if seed < 0:
seed = random.randint(1,999999)
image = txt2img(
prompt,
num_inference_steps=turbo_steps,
guidance_scale=0.0,
generator=torch.manual_seed(seed),
).images[0]
upscaled_image = image.resize((1024,1024), 1)
final_image = img2img(
prompt=prompt,
negative_prompt=negative_prompt,
image=upscaled_image,
num_inference_steps=samp_steps,
guidance_scale=5,
strength=1,
generator=torch.manual_seed(seed),
).images[0]
return [final_image], seed
def set_base_models():
txt2img = AutoPipelineForText2Image.from_pretrained(
"stabilityai/sdxl-turbo",
torch_dtype = torch.float16,
variant = "fp16"
)
txt2img.to("cuda")
img2img = StableDiffusionImg2ImgPipeline.from_pretrained(
"Lykon/dreamshaper-8",
torch_dtype = torch.float16,
variant = "fp16",
safety_checker=None
)
img2img.to("cuda")
return txt2img, img2img
with gr.Blocks(css=css) as demo:
with gr.Column():
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt")
submit_btn = gr.Button("Generate", elem_classes="btn-green")
with gr.Row():
turbo_steps = gr.Slider(1, 4, value=1, step=1, label="Turbo steps")
sampling_steps = gr.Slider(1, 6, value=3, step=1, label="Refiner steps")
seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0)
lastSeed = gr.Number(label="Last Seed", value=-1, interactive=False)
gallery = gr.Gallery(show_label=False, preview=True, container=False, height=1100)
submit_btn.click(generate, [prompt, turbo_steps, sampling_steps, seed, negative_prompt], [gallery, lastSeed], queue=True)
txt2img, img2img = set_base_models()
demo.launch(debug=True)