import torch from diffusers import StableDiffusionPipeline import gradio as gr model_base = "Krebzonide/LazyMixPlus" lora_model_path = "Krebzonide/94g1-jemz-41r2-0" pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16, use_safetensors=True) pipe.unet.load_attn_procs(lora_model_path) #working, commented to test stuff------------------------------------------ #pipe.unet.load_attn_procs(lora_model_path, use_auth_token=True) #test accessing a private model---------------------- pipe.to("cuda") css = """ .btn-green { background-image: linear-gradient(to bottom right, #86efac, #22c55e) !important; border-color: #22c55e !important; color: #166534 !important; } .btn-green:hover { background-image: linear-gradient(to bottom right, #86efac, #86efac) !important; } .btn-red { background: linear-gradient(to bottom right, #fda4af, #fb7185) !important; border-color: #fb7185 !important; color: #9f1239 !important; } .btn-red:hover {background: linear-gradient(to bottom right, #fda4af, #fda4af) !important;} /*****/ .dark .btn-green { background-image: linear-gradient(to bottom right, #047857, #065f46) !important; border-color: #047857 !important; color: #ffffff !important; } .dark .btn-green:hover { background-image: linear-gradient(to bottom right, #047857, #047857) !important; } .dark .btn-red { background: linear-gradient(to bottom right, #be123c, #9f1239) !important; border-color: #be123c !important; color: #ffffff !important; } .dark .btn-red:hover {background: linear-gradient(to bottom right, #be123c, #be123c) !important;} """ def generate(prompt, neg_prompt, samp_steps, guide_scale, lora_scale): images = pipe( prompt, negative_prompt=neg_prompt, num_inference_steps=samp_steps, guidance_scale=guide_scale, cross_attention_kwargs={"scale": lora_scale}, num_images_per_prompt=4 ).images return [(img, f"Image {i+1}") for i, img in enumerate(images)] with gr.Blocks(css=css) as demo: with gr.Column(): prompt = gr.Textbox(label="Prompt") negative_prompt = gr.Textbox(label="Negative Prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality, disfigured, deformed, extra limbs, asian, filter, render") submit_btn = gr.Button("Generate", variant="primary", min_width="96px") gallery = gr.Gallery(label="Generated images") with gr.Row(): samp_steps = gr.Slider(1, 100, value=30, step=1, label="Sampling steps") guide_scale = gr.Slider(1, 10, value=6, step=0.5, label="Guidance scale") lora_scale = gr.Slider(0, 1, value=0.5, step=0.01, label="LoRA power") submit_btn.click(generate, [prompt, negative_prompt, samp_steps, guide_scale, lora_scale], [gallery], queue=True) demo.queue(1) demo.launch(debug=True)