Sang-Hoon Lee
Upload 70 files
0164e4a
raw
history blame
9.44 kB
import torch
from torch import nn
from torch.nn import functional as F
import modules
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from commons import init_weights, get_padding
from torch.cuda.amp import autocast
import torchaudio
from einops import rearrange
from alias_free_torch import *
import activations
class AMPBlock0(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
super(AMPBlock0, self).__init__()
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2]))),
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
])
self.convs2.apply(init_weights)
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
self.activations = nn.ModuleList([
Activation1d(
activation=activations.SnakeBeta(channels, alpha_logscale=True))
for _ in range(self.num_layers)
])
def forward(self, x):
acts1, acts2 = self.activations[::2], self.activations[1::2]
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
xt = a1(x)
xt = c1(xt)
xt = a2(xt)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class Generator(torch.nn.Module):
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3))
resblock = AMPBlock0
self.resblocks = nn.ModuleList()
for i in range(1):
ch = upsample_initial_channel//(2**(i))
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(resblock(ch, k, d, activation="snakebeta"))
activation_post = activations.SnakeBeta(ch, alpha_logscale=True)
self.activation_post = Activation1d(activation=activation_post)
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
def forward(self, x, g=None):
x = self.conv_pre(x)
if g is not None:
x = x + self.cond(g)
for i in range(self.num_upsamples):
x = F.interpolate(x, int(x.shape[-1] * 3), mode='linear')
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i*self.num_kernels+j](x)
else:
xs += self.resblocks[i*self.num_kernels+j](x)
x = xs / self.num_kernels
x = self.activation_post(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.resblocks:
l.remove_weight_norm()
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
self.use_spectral_norm = use_spectral_norm
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
])
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class DiscriminatorR(torch.nn.Module):
def __init__(self, resolution, use_spectral_norm=False):
super(DiscriminatorR, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
n_fft, hop_length, win_length = resolution
self.spec_transform = torchaudio.transforms.Spectrogram(
n_fft=n_fft, hop_length=hop_length, win_length=win_length, window_fn=torch.hann_window,
normalized=True, center=False, pad_mode=None, power=None)
self.convs = nn.ModuleList([
norm_f(nn.Conv2d(2, 32, (3, 9), padding=(1, 4))),
norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), padding=(1, 4))),
norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), dilation=(2,1), padding=(2, 4))),
norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), dilation=(4,1), padding=(4, 4))),
norm_f(nn.Conv2d(32, 32, (3, 3), padding=(1, 1))),
])
self.conv_post = norm_f(nn.Conv2d(32, 1, (3, 3), padding=(1, 1)))
def forward(self, y):
fmap = []
x = self.spec_transform(y) # [B, 2, Freq, Frames, 2]
x = torch.cat([x.real, x.imag], dim=1)
x = rearrange(x, 'b c w t -> b c t w')
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(MultiPeriodDiscriminator, self).__init__()
periods = [2,3,5,7,11]
resolutions = [[4096, 1024, 4096], [2048, 512, 2048], [1024, 256, 1024], [512, 128, 512], [256, 64, 256], [128, 32, 128]]
discs = [DiscriminatorR(resolutions[i], use_spectral_norm=use_spectral_norm) for i in range(len(resolutions))]
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
self.discriminators = nn.ModuleList(discs)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
y_d_gs.append(y_d_g)
fmap_rs.append(fmap_r)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class SynthesizerTrn(nn.Module):
"""
Synthesizer for Training
"""
def __init__(self,
spec_channels,
segment_size,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
**kwargs):
super().__init__()
self.spec_channels = spec_channels
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.dec = Generator(1, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes)
def forward(self, x):
y = self.dec(x)
return y
@torch.no_grad()
def infer(self, x, max_len=None):
o = self.dec(x[:,:,:max_len])
return o