Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import google.generativeai as genai
|
3 |
import os
|
4 |
-
import PyPDF2 as pdf
|
5 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
6 |
|
7 |
load_dotenv()
|
8 |
|
9 |
genai.configure(api_key=("AIzaSyDziGvuT1woHnH4_S3L_zQZV55Yj-123A8"))
|
10 |
|
11 |
-
#alternative key
|
12 |
-
#genai.configure(api_key=("AIzaSyAr3d_7fp0wMxuUrnf_tATknu_TRPKDdxg"))
|
13 |
-
|
14 |
# gemini function for general content generation
|
15 |
def get_gemini_response(input):
|
16 |
model = genai.GenerativeModel('gemini-pro')
|
17 |
response = model.generate_content(input)
|
18 |
return response
|
19 |
|
20 |
-
#
|
21 |
-
def
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
return text
|
28 |
|
29 |
# malware detection function
|
@@ -71,19 +186,19 @@ def display_response_content(response):
|
|
71 |
|
72 |
## Streamlit App
|
73 |
st.title("AI-Powered Security and Chatbot System")
|
74 |
-
st.text("Use the AI system for malware detection and
|
75 |
|
76 |
# Tabs for different functionalities
|
77 |
tab1, tab2 = st.tabs(["Malware Detection", "Chatbot"])
|
78 |
|
79 |
with tab1:
|
80 |
st.header("Malware Detection")
|
81 |
-
uploaded_file = st.file_uploader("Upload a file for malware detection", type=
|
82 |
submit_malware = st.button('Analyze for Malware')
|
83 |
|
84 |
if submit_malware:
|
85 |
if uploaded_file is not None:
|
86 |
-
text =
|
87 |
response = detect_malware(text)
|
88 |
|
89 |
# Parse and display response in a structured way
|
@@ -100,3 +215,4 @@ with tab2:
|
|
100 |
|
101 |
# Parse and display response in a structured way
|
102 |
display_response_content(response)
|
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import google.generativeai as genai
|
3 |
+
# import os
|
4 |
+
# import PyPDF2 as pdf
|
5 |
+
# from dotenv import load_dotenv
|
6 |
+
|
7 |
+
# load_dotenv()
|
8 |
+
|
9 |
+
# genai.configure(api_key=("AIzaSyDziGvuT1woHnH4_S3L_zQZV55Yj-123A8"))
|
10 |
+
|
11 |
+
# #alternative key
|
12 |
+
# #genai.configure(api_key=("AIzaSyAr3d_7fp0wMxuUrnf_tATknu_TRPKDdxg"))
|
13 |
+
|
14 |
+
# # gemini function for general content generation
|
15 |
+
# def get_gemini_response(input):
|
16 |
+
# model = genai.GenerativeModel('gemini-pro')
|
17 |
+
# response = model.generate_content(input)
|
18 |
+
# return response
|
19 |
+
|
20 |
+
# # convert pdf to text
|
21 |
+
# def input_pdf_text(uploaded_file):
|
22 |
+
# reader = pdf.PdfReader(uploaded_file)
|
23 |
+
# text = ""
|
24 |
+
# for page in range(len(reader.pages)):
|
25 |
+
# page = reader.pages[page]
|
26 |
+
# text += str(page.extract_text())
|
27 |
+
# return text
|
28 |
+
|
29 |
+
# # malware detection function
|
30 |
+
# def detect_malware(input_text):
|
31 |
+
# malware_prompt = f"""
|
32 |
+
# ### As a cybersecurity expert, your task is to analyze the following text for any indications of malware.
|
33 |
+
# ### Text:
|
34 |
+
# {input_text}
|
35 |
+
# ### Analysis Output:
|
36 |
+
# 1. Identify any potential malware-related content.
|
37 |
+
# 2. Explain the reasoning behind your identification.
|
38 |
+
# 3. Provide recommendations for mitigating any identified risks.
|
39 |
+
# """
|
40 |
+
# response = get_gemini_response(malware_prompt)
|
41 |
+
# return response
|
42 |
+
|
43 |
+
# # chatbot function
|
44 |
+
# def chatbot_response(user_input):
|
45 |
+
# chatbot_prompt = f"""
|
46 |
+
# ### You are an intelligent and friendly chatbot. Engage in a meaningful conversation with the user.
|
47 |
+
# ### User Input:
|
48 |
+
# {user_input}
|
49 |
+
# ### Chatbot Response:
|
50 |
+
# """
|
51 |
+
# response = get_gemini_response(chatbot_prompt)
|
52 |
+
# return response
|
53 |
+
|
54 |
+
# # Function to parse and display response content
|
55 |
+
# def display_response_content(response):
|
56 |
+
# st.subheader("Response Output")
|
57 |
+
# if response and response.candidates:
|
58 |
+
# response_content = response.candidates[0].content.parts[0].text if response.candidates[0].content.parts else ""
|
59 |
+
# sections = response_content.split('###')
|
60 |
+
# for section in sections:
|
61 |
+
# if section.strip():
|
62 |
+
# section_lines = section.split('\n')
|
63 |
+
# section_title = section_lines[0].strip()
|
64 |
+
# section_body = '\n'.join(line.strip() for line in section_lines[1:] if line.strip())
|
65 |
+
# if section_title:
|
66 |
+
# st.markdown(f"**{section_title}**")
|
67 |
+
# if section_body:
|
68 |
+
# st.write(section_body)
|
69 |
+
# else:
|
70 |
+
# st.write("No response received from the model.")
|
71 |
+
|
72 |
+
# ## Streamlit App
|
73 |
+
# st.title("AI-Powered Security and Chatbot System")
|
74 |
+
# st.text("Use the AI system for malware detection and Awaring yourself.")
|
75 |
+
|
76 |
+
# # Tabs for different functionalities
|
77 |
+
# tab1, tab2 = st.tabs(["Malware Detection", "Chatbot"])
|
78 |
+
|
79 |
+
# with tab1:
|
80 |
+
# st.header("Malware Detection")
|
81 |
+
# uploaded_file = st.file_uploader("Upload a file for malware detection", type="pdf", help="Please upload a PDF file.")
|
82 |
+
# submit_malware = st.button('Analyze for Malware')
|
83 |
+
|
84 |
+
# if submit_malware:
|
85 |
+
# if uploaded_file is not None:
|
86 |
+
# text = input_pdf_text(uploaded_file)
|
87 |
+
# response = detect_malware(text)
|
88 |
+
|
89 |
+
# # Parse and display response in a structured way
|
90 |
+
# display_response_content(response)
|
91 |
+
|
92 |
+
# with tab2:
|
93 |
+
# st.header("Chatbot")
|
94 |
+
# user_input = st.text_input("Type your message here")
|
95 |
+
# submit_chat = st.button('Send')
|
96 |
+
|
97 |
+
# if submit_chat:
|
98 |
+
# if user_input:
|
99 |
+
# response = chatbot_response(user_input)
|
100 |
+
|
101 |
+
# # Parse and display response in a structured way
|
102 |
+
# display_response_content(response)
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
import streamlit as st
|
107 |
import google.generativeai as genai
|
108 |
import os
|
|
|
109 |
from dotenv import load_dotenv
|
110 |
+
import PyPDF2 as pdf
|
111 |
+
import docx
|
112 |
+
import chardet
|
113 |
|
114 |
load_dotenv()
|
115 |
|
116 |
genai.configure(api_key=("AIzaSyDziGvuT1woHnH4_S3L_zQZV55Yj-123A8"))
|
117 |
|
|
|
|
|
|
|
118 |
# gemini function for general content generation
|
119 |
def get_gemini_response(input):
|
120 |
model = genai.GenerativeModel('gemini-pro')
|
121 |
response = model.generate_content(input)
|
122 |
return response
|
123 |
|
124 |
+
# Function to read text from different file types
|
125 |
+
def read_file_content(uploaded_file):
|
126 |
+
file_type = uploaded_file.type
|
127 |
+
if file_type == "application/pdf":
|
128 |
+
reader = pdf.PdfReader(uploaded_file)
|
129 |
+
text = ""
|
130 |
+
for page in range(len(reader.pages)):
|
131 |
+
page = reader.pages[page]
|
132 |
+
text += str(page.extract_text())
|
133 |
+
elif file_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
|
134 |
+
doc = docx.Document(uploaded_file)
|
135 |
+
text = '\n'.join([para.text for para in doc.paragraphs])
|
136 |
+
else:
|
137 |
+
# For other file types, assume it's a text file and try to read it as text
|
138 |
+
text = uploaded_file.read()
|
139 |
+
result = chardet.detect(text)
|
140 |
+
text = text.decode(result['encoding'])
|
141 |
+
|
142 |
return text
|
143 |
|
144 |
# malware detection function
|
|
|
186 |
|
187 |
## Streamlit App
|
188 |
st.title("AI-Powered Security and Chatbot System")
|
189 |
+
st.text("Use the AI system for malware detection and friendly conversation.")
|
190 |
|
191 |
# Tabs for different functionalities
|
192 |
tab1, tab2 = st.tabs(["Malware Detection", "Chatbot"])
|
193 |
|
194 |
with tab1:
|
195 |
st.header("Malware Detection")
|
196 |
+
uploaded_file = st.file_uploader("Upload a file for malware detection", type=None, help="Please upload a file of any type.")
|
197 |
submit_malware = st.button('Analyze for Malware')
|
198 |
|
199 |
if submit_malware:
|
200 |
if uploaded_file is not None:
|
201 |
+
text = read_file_content(uploaded_file)
|
202 |
response = detect_malware(text)
|
203 |
|
204 |
# Parse and display response in a structured way
|
|
|
215 |
|
216 |
# Parse and display response in a structured way
|
217 |
display_response_content(response)
|
218 |
+
|