File size: 7,358 Bytes
0624a49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
import os
from PIL import Image
import pytesseract
from pdf2image import convert_from_path
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.memory import ConversationBufferMemory
from langchain_groq import ChatGroq
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
def setup_environment():
os.environ["GROQ_API_KEY"] = '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'
# Define OCR functions for image and PDF files
def ocr_image(image_path, language='eng+guj'):
img = Image.open(image_path)
text = pytesseract.image_to_string(img, lang=language)
return text
def ocr_pdf(pdf_path, language='eng+guj'):
images = convert_from_path(pdf_path)
all_text = ""
for img in images:
text = pytesseract.image_to_string(img, lang=language)
all_text += text + "\n"
return all_text
def ocr_file(file_path):
file_extension = os.path.splitext(file_path)[1].lower()
if file_extension == ".pdf":
text_re = ocr_pdf(file_path, language='guj+eng')
elif file_extension in [".jpg", ".jpeg", ".png", ".bmp"]:
text_re = ocr_image(file_path, language='guj+eng')
else:
raise ValueError("Unsupported file format. Supported formats are PDF, JPG, JPEG, PNG, BMP.")
return text_re
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks):
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
os.makedirs("faiss_index", exist_ok=True)
vector_store.save_local("faiss_index")
return vector_store
def process_ocr_and_pdf_files(file_paths):
raw_text = ""
for file_path in file_paths:
raw_text += ocr_file(file_path) + "\n"
text_chunks = get_text_chunks(raw_text)
return get_vector_store(text_chunks)
def get_conversational_chain():
template = """You are an intelligent educational assistant specialized in handling queries about documents. You have been provided with OCR-processed text from the uploaded files that contains important educational information.
Core Responsibilities:
1. Language Processing:
- Identify the language of the user's query (English or Gujarati)
- Respond in the same language as the query
- If the query is in Gujarati, ensure the response maintains proper Gujarati grammar and terminology
- For technical terms, provide both English and Gujarati versions when relevant
2. Document Understanding:
- Analyze the OCR-processed text from the uploaded files
- Account for potential OCR errors or misinterpretations
- Focus on extracting accurate information despite possible OCR imperfections
3. Response Guidelines:
- Provide direct, clear answers based solely on the document content
- If information is unclear due to OCR quality, mention this limitation
- For numerical data (dates, percentages, marks), double-check accuracy before responding
- If information is not found in the documents, clearly state: \"This information is not present in the uploaded documents\"
4. Educational Context:
- Maintain focus on educational queries related to the document content
- For admission-related queries, emphasize important deadlines and requirements
- For scholarship information, highlight eligibility criteria and application processes
- For course-related queries, provide detailed, accurate information from the documents
5. Response Format:
- Structure responses clearly with relevant subpoints when necessary
- For complex information, break down the answer into digestible parts
- Include relevant reference points from the documents when applicable
- Format numerical data and dates clearly
6. Quality Control:
- Verify that responses align with the document content
- Don't make assumptions beyond the provided information
- If multiple interpretations are possible due to OCR quality, mention all possibilities
- Maintain consistency in terminology throughout the conversation
Important Rules:
- Never make up information not present in the documents
- Don't combine information from previous conversations or external knowledge
- Always indicate if certain parts of the documents are unclear due to OCR quality
- Maintain professional tone while being accessible to students and parents
- If the query is out of scope of the uploaded documents, politely redirect to relevant official sources
Context from uploaded documents:
{context}
Chat History:
{history}
Current Question: {question}
Assistant: Let me provide a clear and accurate response based on the uploaded documents..."""
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
new_vector_store = FAISS.load_local(
"faiss_index", embeddings, allow_dangerous_deserialization=True
)
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["history", "context", "question"], template=template)
qa_chain = RetrievalQA.from_chain_type(llm, retriever=new_vector_store.as_retriever(), chain_type='stuff', verbose=True, chain_type_kwargs={"verbose": True,"prompt": QA_CHAIN_PROMPT,"memory": ConversationBufferMemory(memory_key="history",input_key="question"),})
return qa_chain
def user_input(user_question):
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
response = chain({"input_documents": docs, "query": user_question}, return_only_outputs=True)
return response.get("result", "No result found")
def gradio_interface():
def process_files(files):
file_paths = []
for file in files:
file_path = os.path.join("temp", file.name)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "wb") as f:
f.write(file.read())
file_paths.append(file_path)
process_ocr_and_pdf_files(file_paths)
return "Files processed and vector store updated!"
def ask_question(user_question):
return user_input(user_question)
file_upload = gr.inputs.File(label="Upload Files", type="file", multiple=True)
text_input = gr.inputs.Textbox(label="Ask a question related to the uploaded documents:")
outputs = [gr.outputs.Textbox(label="Output"), gr.outputs.Textbox(label="Conversation History")]
interface = gr.Interface(
fn=[process_files, ask_question],
inputs=[file_upload, text_input],
outputs=outputs,
live=True
)
interface.launch()
if __name__ == "__main__":
setup_environment()
gradio_interface()
|