File size: 11,527 Bytes
f9632a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9107744
f9632a1
08c07a3
f9632a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import gradio as gr
from transformers import pipeline
from wordcloud import WordCloud, STOPWORDS
from youtubesearchpython import *
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import re
import io
from io import BytesIO

sentiment_task = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest", tokenizer="cardiffnlp/twitter-roberta-base-sentiment-latest")
text_summarization_task = pipeline("summarization", model="facebook/bart-large-cnn")

def extract_youtube_video_id(url_or_id):
    """
    Extracts the YouTube video ID from a given URL or returns the ID if a direct ID is provided.

    Args:
    url_or_id (str): A YouTube URL or a video ID.

    Returns:
    str: The extracted YouTube video ID.
    """
    # Check if it's already a valid YouTube ID (typically 11 characters)
    if len(url_or_id) == 11 and not re.search(r'[^0-9A-Za-z_-]', url_or_id):
        return url_or_id

    # Regular expressions for various YouTube URL formats
    regex_patterns = [
        r'(?:https?://)?www\.youtube\.com/watch\?v=([0-9A-Za-z_-]{11})',
        r'(?:https?://)?youtu\.be/([0-9A-Za-z_-]{11})',
        r'(?:https?://)?www\.youtube\.com/embed/([0-9A-Za-z_-]{11})',
        r'(?:https?://)?www\.youtube\.com/v/([0-9A-Za-z_-]{11})',
        r'(?:https?://)?www\.youtube\.com/shorts/([0-9A-Za-z_-]{11})'
    ]

    # Try each regex pattern to find a match
    for pattern in regex_patterns:
        match = re.search(pattern, url_or_id)
        if match:
            return match.group(1)

    # If no pattern matches, return an error or a specific message
    return "Invalid YouTube URL or ID"

def comments_collector(video_link, max_comments = 100):
  # This function collects comments from a given YouTube video link.
  # It uses the youtubesearchpython library to extract comments and pandas for data manipulation.
  # Args:
  #   video_link (str): The YouTube video link from which to collect comments.
  #   max_comments (int, optional): The maximum number of comments to retrieve. Defaults to 100.
  # Returns:
  #   pandas.DataFrame: A DataFrame containing the comments, or None in case of an exception.
  video_id = extract_youtube_video_id(video_link)
  max_comments -= 1
  
  try:
    #load the first 20 comments
    comments = Comments(video_id)
    print(f'Comments Retrieved and Loading...')

    #load more comments, 20 at a time, until the limit is reached
    while comments.hasMoreComments and (len(comments.comments["result"]) <= max_comments):
      comments.getNextComments()
    print(f'Found all the {len(comments.comments["result"])} comments.')
    
    #load all the comments into "comments" variable
    comments = comments.comments

    #define data list for collecting comments for a particular video
    data = []

    #loop through all the comments
    for i in range(len(comments['result'])):
      #############################################################################
      is_author = comments['result'][i]['authorIsChannelOwner']

      #check if the comment is from the video author or not -> neglect if so.
      if is_author:
        pass
      #############################################################################
      #comment comes from others, we will save this comment.
      else:
        comment_dict = {}
        comment_id = comments['result'][i]['id']
        author = comments['result'][i]['author']['name']
        content = comments['result'][i]['content']

        #############################################################################
        #cleaning comments likes (e.g., convert 10K likes to 10000, convert None like to 0)
        if comments['result'][i]['votes']['label'] is None:
          likes = 0
        else:
          likes = comments['result'][i]['votes']['label'].split(' ')[0]
          if 'K' in likes:
            likes = int(float(likes.replace('K', '')) * 1000)

        #############################################################################
        #cleaning comments reply count
        replyCount = comments['result'][i]['replyCount']
        #if there is no reply, we will log it as 0
        if replyCount is None:
          comment_dict['replyCount'] = 0
        #otherwise, we will log as integer
        else:
          comment_dict['replyCount'] = int(replyCount)

        #############################################################################
        comment_dict['comment_id'] = comment_id
        comment_dict['author'] = author
        comment_dict['content'] = content
        comment_dict['likes'] = likes

        data.append(comment_dict)
        #############################################################################
    print(f'Excluding author comments, we ended up with {len(data)} comments')
    return pd.DataFrame(data)
  except Exception as e:
    print(e)
    return None

def comments_analyzer(comments_df):
  # This function analyzes the sentiment of comments in a given DataFrame.
  # It requires a DataFrame of comments, typically generated by the comments_collector function.
  # Args:
  #   comments_df (pandas.DataFrame): A DataFrame containing YouTube comments.
  # Returns:
  #   dict: A dictionary with analysis results, including sentiment counts and percentages, or None if input is None.
  # The function applies a sentiment analysis task on each comment and categorizes them as positive, neutral, or negative.
  # It also calculates the percentage of positive comments and blends all comments into a single string.
  if comments_df is None:
    return None
  else:
    comments_df['sentiment'] = comments_df['content'].apply(lambda x: sentiment_task(x)[0]['label'])

    data = {}
    #Categorize the comments by sentiment and count them
    data['total_comments'] = len(comments_df)
    data['num_positive'] = comments_df['sentiment'].value_counts().get('positive', 0)
    data['num_neutral'] = comments_df['sentiment'].value_counts().get('neutral', 0)
    data['num_negative'] = comments_df['sentiment'].value_counts().get('negative', 0)

    #blend all the comments
    data['blended_comments'] = comments_df['content'].str.cat(sep=' ') 
    data['pct_positive'] = 100 * round(data['num_positive']/data['total_comments'], 2)

    return data
  
def generate_wordcloud(long_text, additional_stopwords=['Timestamps', 'timestamps']):
  # This function generates a word cloud image from a given text and returns it as a PIL image object.
  # Args:
  #   long_text (str): The text from which to generate the word cloud.
  #   additional_stopwords (list, optional): A list of words to be excluded from the word cloud.
  # The function creates a word cloud with specified font size, word limit, and background color.
  # It then converts the matplotlib plot to a PIL Image object for further use or saving.
  # Returns:
  #   PIL.Image: The generated word cloud as a PIL image object.

  #Call the default STOPWORDS from wordcloud library
  stopwords = set(STOPWORDS)

  #Combine the default STOPWORDS with the manually specified STOPWORDS to exclude them from the wordcloud.
  all_stopwords = stopwords.union(additional_stopwords)

  # Create a Word Cloud
  wordcloud = WordCloud(max_font_size=50, max_words=20, background_color="black", stopwords=all_stopwords, colormap='plasma').generate(long_text)

  # Create a figure
  plt.figure(figsize=(10,10), facecolor=None)
  plt.imshow(wordcloud, interpolation="bilinear")
  plt.axis("off")
  plt.tight_layout(pad=0)

  # Save to a BytesIO object
  img_buf = io.BytesIO()
  plt.savefig(img_buf, format='png', bbox_inches='tight', pad_inches=0)
  img_buf.seek(0)

  # Close the plt figure to prevent display
  plt.close()

  # Use PIL to open the image from the BytesIO object
  image = Image.open(img_buf)

  return image

def create_sentiment_analysis_chart(data):
  # This function creates a bar chart for sentiment analysis results and returns it as a PIL image object.
  # Args:
  #   data (dict): A dictionary containing the count of positive, negative, and neutral comments.
  # The function first converts the input data into a pandas DataFrame.
  # It then creates a bar chart using matplotlib, setting specific colors for different sentiment types.
  # Titles, labels, and legends are added for clarity.
  # Finally, the plot is saved to a BytesIO object and converted to a PIL image.
  # Returns:
  #   PIL.Image: The sentiment analysis bar chart as a PIL image object.
  
  # Convert the data to a DataFrame
  df = {}
  df['num_positive'] = data['num_positive']
  df['num_negative'] = data['num_negative']
  df['num_neutral'] = data['num_neutral']
  df = pd.DataFrame(df, index=[0])

  # Plotting
  plt.figure(figsize=(8, 6))
  bar_colors = ['green', 'red', 'blue']  # Colors for positive, negative, neutral
  df.plot(kind='bar', color=bar_colors, legend=True)

  # Adding titles and labels
  plt.title('Sentiment Analysis Results')
  plt.xlabel('Sentiment Types')
  plt.ylabel('Number of Comments')
  plt.xticks(ticks=[0], labels=['Sentiments'], rotation=0)  # Adjust x-ticks
  plt.legend(['Positive', 'Negative', 'Neutral'])

  # Save the plot to a BytesIO object
  buf = BytesIO()
  plt.savefig(buf, format='png')
  buf.seek(0)

  # Close the plt figure to prevent display
  plt.close()

  # Use PIL to open the image from the BytesIO object
  image = Image.open(buf)

  return image


############################################################################################################################################
# The code for processing the YouTube link, generating the word cloud, summary, and sentiment analysis
# should be defined here (using your existing functions).

def process_youtube_comments(youtube_link, max_comments, stop_words):
    # Process the YouTube link and generate the word cloud, summary, and sentiment analysis
    
    # Pull comments from the YouTube Video
    comments_df = comments_collector(video_link=youtube_link, max_comments=max_comments)
    # Analyze
    analysis_dict = comments_analyzer(comments_df)
    long_text = analysis_dict['blended_comments']

    # Generate word cloud
    word_cloud_img = generate_wordcloud(long_text, additional_stopwords=['Timestamps', 'timestamps'])

    # Text Summarization
    summarized_text = text_summarization_task(long_text, min_length=100, max_length=200, truncation=True)[0]['summary_text']

    # Create Sentiment Chart
    sentiment_chart = create_sentiment_analysis_chart(analysis_dict)

    # Return the generated word cloud image, summary text, and sentiment analysis chart
    return word_cloud_img, summarized_text, sentiment_chart

############################################################################################################################################
# Gradio interface
interface = gr.Interface(
    fn=process_youtube_comments,
    inputs=[
        gr.Textbox(label="YouTube Video Link"),
        gr.Number(label="Maximum Comments", value=100),
        gr.Textbox(label="Excluded Words (comma-separated)")
    ],
    outputs=[
        gr.Image(label="Word Cloud"),
        gr.Textbox(label="Summary of Comments"),
        gr.Image(label="Sentiment Analysis Chart")
    ],
    title="YouTube Comments Analyzer",
    description="Enter a YouTube link to generate a word cloud, summary, and sentiment analysis of the comments."
)

# Run the interface
interface.launch()
############################################################################################################################################