Upload 3 files
Browse files- Dockerfile +30 -0
- app.py +141 -0
- requirements.txt +10 -0
Dockerfile
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#Use the official Python 3.9 image
|
2 |
+
FROM python:3.8
|
3 |
+
|
4 |
+
# Set the working directory to /code
|
5 |
+
WORKDIR /code
|
6 |
+
|
7 |
+
# Copy the current directory contents into the container at /code
|
8 |
+
COPY ./requirements.txt /code/requirements.txt
|
9 |
+
|
10 |
+
# Install requirements.txt
|
11 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
12 |
+
|
13 |
+
# Set up a new user named "user" with user ID 1000
|
14 |
+
RUN useradd -m -u 1000 user
|
15 |
+
# Switch to the "user" user
|
16 |
+
USER user
|
17 |
+
# Set home to the user's home directory
|
18 |
+
ENV HOME=/home/user \
|
19 |
+
PATH=/home/user/.local/bin:$PATH
|
20 |
+
|
21 |
+
# Set the working directory to the user's home directory
|
22 |
+
WORKDIR $HOME/app
|
23 |
+
|
24 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
25 |
+
COPY --chown=user . $HOME/app
|
26 |
+
|
27 |
+
# Start the FastAPI app on port 7860, the default port expected by Spaces
|
28 |
+
# CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
29 |
+
|
30 |
+
CMD gunicorn -k uvicorn.workers.UvicornWorker --workers 2 --threads=2 --max-requests 512 --bind 0.0.0.0:7860 app:app
|
app.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
import os
|
3 |
+
from typing import Any, Union,Dict, List
|
4 |
+
import numpy as np
|
5 |
+
import io
|
6 |
+
import base64
|
7 |
+
import requests
|
8 |
+
|
9 |
+
import cv2
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
# Create a new FastAPI app instance
|
13 |
+
app = FastAPI()
|
14 |
+
|
15 |
+
# Initialize the text generation pipeline
|
16 |
+
# This function will be able to generate text
|
17 |
+
# given an input.
|
18 |
+
prototxtPath = os.path.sep.join(["face_detector", "deploy.prototxt"])
|
19 |
+
weightsPath = os.path.sep.join(["face_detector",
|
20 |
+
"res10_300x300_ssd_iter_140000.caffemodel"])
|
21 |
+
net = cv2.dnn.readNet(prototxtPath, weightsPath)
|
22 |
+
|
23 |
+
# Define a function to handle the GET request at `/generate`
|
24 |
+
# The generate() function is defined as a FastAPI route that takes a
|
25 |
+
# string parameter called text. The function generates text based on the # input using the pipeline() object, and returns a JSON response
|
26 |
+
# containing the generated text under the key "output"
|
27 |
+
args = {
|
28 |
+
"method": "simple",
|
29 |
+
"blocks": 20,
|
30 |
+
"confidence": 0.5
|
31 |
+
}
|
32 |
+
def anonymize_face_simple(image, factor=3.0):
|
33 |
+
# automatically determine the size of the blurring kernel based
|
34 |
+
# on the spatial dimensions of the input image
|
35 |
+
(h, w) = image.shape[:2]
|
36 |
+
kW = int(w / factor)
|
37 |
+
kH = int(h / factor)
|
38 |
+
|
39 |
+
# ensure the width of the kernel is odd
|
40 |
+
if kW % 2 == 0:
|
41 |
+
kW -= 1
|
42 |
+
|
43 |
+
# ensure the height of the kernel is odd
|
44 |
+
if kH % 2 == 0:
|
45 |
+
kH -= 1
|
46 |
+
|
47 |
+
# apply a Gaussian blur to the input image using our computed
|
48 |
+
# kernel size
|
49 |
+
return cv2.GaussianBlur(image, (kW, kH), 0)
|
50 |
+
|
51 |
+
def anonymize_face_pixelate(image, blocks=3):
|
52 |
+
# divide the input image into NxN blocks
|
53 |
+
(h, w) = image.shape[:2]
|
54 |
+
xSteps = np.linspace(0, w, blocks + 1, dtype="int")
|
55 |
+
ySteps = np.linspace(0, h, blocks + 1, dtype="int")
|
56 |
+
|
57 |
+
# loop over the blocks in both the x and y direction
|
58 |
+
for i in range(1, len(ySteps)):
|
59 |
+
for j in range(1, len(xSteps)):
|
60 |
+
# compute the starting and ending (x, y)-coordinates
|
61 |
+
# for the current block
|
62 |
+
startX = xSteps[j - 1]
|
63 |
+
startY = ySteps[i - 1]
|
64 |
+
endX = xSteps[j]
|
65 |
+
endY = ySteps[i]
|
66 |
+
|
67 |
+
# extract the ROI using NumPy array slicing, compute the
|
68 |
+
# mean of the ROI, and then draw a rectangle with the
|
69 |
+
# mean RGB values over the ROI in the original image
|
70 |
+
roi = image[startY:endY, startX:endX]
|
71 |
+
(B, G, R) = [int(x) for x in cv2.mean(roi)[:3]]
|
72 |
+
cv2.rectangle(image, (startX, startY), (endX, endY),
|
73 |
+
(B, G, R), -1)
|
74 |
+
|
75 |
+
# return the pixelated blurred image
|
76 |
+
return image
|
77 |
+
|
78 |
+
@app.get("/generate")
|
79 |
+
def generate(path: str):
|
80 |
+
"""
|
81 |
+
Using the text summarization pipeline from `transformers`, summerize text
|
82 |
+
from the given input text. The model used is `philschmid/bart-large-cnn-samsum`, which
|
83 |
+
can be found [here](<https://huggingface.co/philschmid/bart-large-cnn-samsum>).
|
84 |
+
"""
|
85 |
+
r = requests.get(path, stream=True)
|
86 |
+
img = Image.open(io.BytesIO(r.content)).convert('RGB')
|
87 |
+
open_cv_image = np.array(img)
|
88 |
+
# Convert RGB to BGR
|
89 |
+
open_cv_image = open_cv_image[:, :, ::-1].copy() # numpy array (width, hight, 3)
|
90 |
+
image = open_cv_image # numpy array (width, hight, 3)
|
91 |
+
orig = image.copy()
|
92 |
+
(h, w) = image.shape[:2]
|
93 |
+
|
94 |
+
# construct a blob from the image
|
95 |
+
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300),(104.0, 177.0, 123.0))
|
96 |
+
|
97 |
+
# pass the blob through the network and obtain the face detections
|
98 |
+
logger.info("computing face detections...")
|
99 |
+
net.setInput(blob)
|
100 |
+
detections = net.forward()
|
101 |
+
|
102 |
+
# loop over the detections
|
103 |
+
for i in range(0, detections.shape[2]):
|
104 |
+
# extract the confidence (i.e., probability) associated with the
|
105 |
+
# detection
|
106 |
+
confidence = detections[0, 0, i, 2]
|
107 |
+
|
108 |
+
# filter out weak detections by ensuring the confidence is greater
|
109 |
+
# than the minimum confidence
|
110 |
+
if confidence > args["confidence"]:
|
111 |
+
# compute the (x, y)-coordinates of the bounding box for the
|
112 |
+
# object
|
113 |
+
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
114 |
+
(startX, startY, endX, endY) = box.astype("int")
|
115 |
+
|
116 |
+
# extract the face ROI
|
117 |
+
face = image[startY:endY, startX:endX]
|
118 |
+
|
119 |
+
# check to see if we are applying the "simple" face blurring
|
120 |
+
# method
|
121 |
+
if args["method"] == "simple":
|
122 |
+
face = anonymize_face_simple(face, factor=3.0)
|
123 |
+
|
124 |
+
# otherwise, we must be applying the "pixelated" face
|
125 |
+
# anonymization method
|
126 |
+
else:
|
127 |
+
face = anonymize_face_pixelate(face,blocks=args["blocks"])
|
128 |
+
|
129 |
+
# store the blurred face in the output image
|
130 |
+
image[startY:endY, startX:endX] = face
|
131 |
+
|
132 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
133 |
+
img = Image.fromarray(image)
|
134 |
+
|
135 |
+
im_file = io.BytesIO()
|
136 |
+
img.save(im_file, format="PNG")
|
137 |
+
im_bytes = base64.b64encode(im_file.getvalue()).decode("utf-8")
|
138 |
+
|
139 |
+
# Return the generated text in a JSON response
|
140 |
+
return {"output": im_bytes}
|
141 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python-headless==4.7.0.72
|
2 |
+
imageio==2.9.0
|
3 |
+
requests==2.27.*
|
4 |
+
pandas
|
5 |
+
Pillow==7.2.0
|
6 |
+
uvloop==0.15.2
|
7 |
+
uvicorn==0.13.4
|
8 |
+
httptools==0.2.0
|
9 |
+
fastapi==0.74.*
|
10 |
+
gunicorn==20.1.0
|