Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,48 +3,58 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
-
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
#
|
12 |
-
asr_pipe = pipeline("automatic-speech-recognition", model="
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
|
17 |
-
model =
|
18 |
-
|
19 |
|
20 |
-
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def translate(audio):
|
25 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
26 |
return outputs["text"]
|
27 |
|
28 |
-
|
29 |
def synthesise(text):
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
32 |
return speech.cpu()
|
33 |
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|
36 |
translated_text = translate(audio)
|
|
|
37 |
synthesised_speech = synthesise(translated_text)
|
38 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
39 |
-
return 16000, synthesised_speech
|
40 |
|
41 |
|
42 |
-
title = "
|
43 |
description = """
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-

|
48 |
"""
|
49 |
|
50 |
demo = gr.Blocks()
|
@@ -61,12 +71,15 @@ file_translate = gr.Interface(
|
|
61 |
fn=speech_to_speech_translation,
|
62 |
inputs=gr.Audio(source="upload", type="filepath"),
|
63 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
64 |
-
examples=[["./example.wav"]],
|
65 |
title=title,
|
66 |
description=description,
|
67 |
)
|
68 |
|
69 |
with demo:
|
70 |
-
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "
|
71 |
|
72 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperProcessor
|
|
|
7 |
|
8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
+
# распознавание речи
|
11 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="voidful/wav2vec2-xlsr-multilingual-56", device=device)
|
12 |
+
|
13 |
+
processor = WhisperProcessor.from_pretrained(
|
14 |
+
"openai/whisper-small")
|
15 |
+
|
16 |
+
translator_en = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
|
17 |
+
translator_ru = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru")
|
18 |
|
19 |
+
from transformers import VitsModel, VitsTokenizer
|
|
|
20 |
|
21 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-rus")
|
22 |
+
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus")
|
23 |
|
|
|
|
|
24 |
|
25 |
+
def translator_mul_ru(text):
|
26 |
+
|
27 |
+
translation = translator_ru(translator_en(text)[0]['translation_text'])
|
28 |
+
return translation[0]['translation_text']
|
29 |
|
30 |
def translate(audio):
|
31 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
32 |
return outputs["text"]
|
33 |
|
|
|
34 |
def synthesise(text):
|
35 |
+
translated_text = translator_mul_ru(text)
|
36 |
+
inputs = tokenizer(translated_text, return_tensors="pt")
|
37 |
+
input_ids = inputs["input_ids"]
|
38 |
+
|
39 |
+
with torch.no_grad():
|
40 |
+
outputs = model(input_ids)
|
41 |
+
speech = outputs["waveform"]
|
42 |
return speech.cpu()
|
43 |
|
44 |
|
45 |
def speech_to_speech_translation(audio):
|
46 |
translated_text = translate(audio)
|
47 |
+
print(translated_text)
|
48 |
synthesised_speech = synthesise(translated_text)
|
49 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
50 |
+
return 16000, synthesised_speech[0]
|
51 |
|
52 |
|
53 |
+
title = "Speech-to-Speech Translation"
|
54 |
description = """
|
55 |
+
* Выбранная ASR модель - https://huggingface.co/voidful/wav2vec2-xlsr-multilingual-56
|
56 |
+
* Перевод текста на русский с помощью модели https://huggingface.co/Helsinki-NLP/opus-mt-mul-en
|
57 |
+
* Синтез речи на русском языке с помощью модели https://huggingface.co/facebook/mms-tts-rus
|
|
|
58 |
"""
|
59 |
|
60 |
demo = gr.Blocks()
|
|
|
71 |
fn=speech_to_speech_translation,
|
72 |
inputs=gr.Audio(source="upload", type="filepath"),
|
73 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
|
|
74 |
title=title,
|
75 |
description=description,
|
76 |
)
|
77 |
|
78 |
with demo:
|
79 |
+
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "File"])
|
80 |
|
81 |
demo.launch()
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|