File size: 6,184 Bytes
49a904f d790c0b b58c31f 49a904f d790c0b ebbd06c 49a904f 88183ad 6c226f9 b58c31f 49a904f 66efbc3 d790c0b 6c226f9 49a904f 77cd7d3 4ee1084 49a904f 77cd7d3 49a904f 6c226f9 5d52c32 3c0cd8e 49a904f 6c226f9 49a904f 77cd7d3 49a904f 6c226f9 f4f8599 6c226f9 49a904f d790c0b 49a904f d790c0b 49a904f d790c0b 49a904f d790c0b 49a904f d790c0b 49a904f b646ce4 49a904f d790c0b 49a904f 66efbc3 6c226f9 66efbc3 d790c0b 6c226f9 b97a3c2 49a904f 0a7fcda 49a904f 6c226f9 49a904f 6c226f9 49a904f 6c226f9 49a904f 3c0cd8e def4a0b d563072 77cd7d3 d563072 970203f d563072 3c0cd8e 49a904f 3c0cd8e 49a904f 6c226f9 def4a0b d563072 77cd7d3 d563072 970203f d563072 6c226f9 7097513 49a904f 7097513 6c226f9 49a904f d563072 77cd7d3 d563072 970203f d563072 6c226f9 49a904f 7097513 49a904f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from transformers.pipelines.audio_utils import ffmpeg_read
from huggingface_hub import login
import yt_dlp as youtube_dl
import gradio as gr
import tempfile
import spaces
import torch
import time
import os
login(os.environ["HF"], add_to_git_credential=True)
BATCH_SIZE = 16
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "Kushtrim/whisper-large-v3-turbo-shqip"
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, use_safetensors=True).to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor,
max_new_tokens=256, chunk_length_s=28, batch_size=16, torch_dtype=torch_dtype, device=device,
token=os.environ["HF"])
@spaces.GPU
def transcribe(inputs, task):
if inputs is None:
raise gr.Error(
"No audio file submitted! Please upload or record an audio file before submitting your request.")
text = pipe(inputs, generate_kwargs={
'num_beams': 5, "task": task, 'language': 'sq'}, return_timestamps=True)["text"]
return text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime(
"%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime(
"%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename,
"format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def yt_transcribe(yt_url, task, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs,
"sampling_rate": pipe.feature_extractor.sampling_rate}
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={
"task": task}, return_timestamps=True)["text"]
return html_embed_str, text
demo = gr.Blocks()
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources=["upload"], type="filepath", label="Audio file"),
],
outputs="text",
title="Whisper Large V3 Turbo Shqip: Transcribe Audio",
description=("This fine-tuned Whisper model provides reliable transcription for Albanian audio, whether from a microphone or an uploaded file. "
"Key details about this project:"
"\n\n- Fine-tuned on 200 hours of carefully curated Albanian audio data. "
"\n- This is the third training run, reflecting continuous improvements as the dataset evolves. "
f"\n- Hosted on Hugging Face. Repository: [{model_id}](https://huggingface.co/{model_id}). "
),
allow_flagging="never",
)
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources=["microphone"], type="filepath"),
],
outputs="text",
title="Whisper Large V3 Turbo Shqip: Transcribe Audio",
description=("This fine-tuned Whisper model provides reliable transcription for Albanian audio, whether from a microphone or an uploaded file. "
"Key details about this project:"
"\n\n- Fine-tuned on 200 hours of carefully curated Albanian audio data. "
"\n- This is the third training run, reflecting continuous improvements as the dataset evolves. "
f"\n- Hosted on Hugging Face. Repository: [{model_id}](https://huggingface.co/{model_id}). "
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(
lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
],
outputs=["html", "text"],
title="Whisper Large V3 Turbo Shqip: Transcribe Audio",
description=("This fine-tuned Whisper model provides reliable transcription for Albanian audio, whether from a microphone or an uploaded file. "
"Key details about this project:"
"\n\n- Fine-tuned on 200 hours of carefully curated Albanian audio data. "
"\n- This is the third training run, reflecting continuous improvements as the dataset evolves. "
f"\n- Hosted on Hugging Face. Repository: [{model_id}](https://huggingface.co/{model_id}). "
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
demo.launch()
|