File size: 6,184 Bytes
49a904f
d790c0b
b58c31f
49a904f
 
d790c0b
ebbd06c
49a904f
 
88183ad
6c226f9
b58c31f
 
49a904f
66efbc3
d790c0b
6c226f9
49a904f
 
77cd7d3
4ee1084
 
49a904f
77cd7d3
49a904f
6c226f9
5d52c32
3c0cd8e
 
49a904f
 
6c226f9
49a904f
77cd7d3
49a904f
6c226f9
 
 
 
 
f4f8599
6c226f9
 
 
 
49a904f
d790c0b
 
49a904f
d790c0b
 
 
 
49a904f
d790c0b
 
 
49a904f
d790c0b
 
 
 
 
49a904f
d790c0b
49a904f
 
 
 
b646ce4
49a904f
 
 
 
d790c0b
 
 
 
 
 
49a904f
66efbc3
6c226f9
66efbc3
d790c0b
 
 
 
 
6c226f9
b97a3c2
49a904f
 
0a7fcda
49a904f
 
6c226f9
 
 
 
49a904f
6c226f9
49a904f
6c226f9
 
49a904f
3c0cd8e
 
def4a0b
d563072
 
77cd7d3
d563072
970203f
d563072
3c0cd8e
 
 
49a904f
3c0cd8e
 
49a904f
6c226f9
 
def4a0b
d563072
 
77cd7d3
d563072
970203f
d563072
6c226f9
 
 
 
 
7097513
49a904f
 
7097513
6c226f9
49a904f
d563072
 
77cd7d3
d563072
970203f
d563072
6c226f9
 
 
 
49a904f
7097513
49a904f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from transformers.pipelines.audio_utils import ffmpeg_read
from huggingface_hub import login
import yt_dlp as youtube_dl
import gradio as gr
import tempfile
import spaces
import torch
import time
import os

login(os.environ["HF"], add_to_git_credential=True)

BATCH_SIZE = 16
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files

device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "Kushtrim/whisper-large-v3-turbo-shqip"
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, use_safetensors=True).to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor,
                max_new_tokens=256, chunk_length_s=28, batch_size=16, torch_dtype=torch_dtype, device=device,
                token=os.environ["HF"])

@spaces.GPU
def transcribe(inputs, task):
    if inputs is None:
        raise gr.Error(
            "No audio file submitted! Please upload or record an audio file before submitting your request.")

    text = pipe(inputs, generate_kwargs={
                'num_beams': 5, "task": task, 'language': 'sq'}, return_timestamps=True)["text"]
    return text


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str


def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()

    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))

    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]

    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)
    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]

    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime(
            "%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime(
            "%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")

    ydl_opts = {"outtmpl": filename,
                "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}

    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))


def yt_transcribe(yt_url, task, max_filesize=75.0):
    html_embed_str = _return_yt_html_embed(yt_url)

    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)
        with open(filepath, "rb") as f:
            inputs = f.read()

    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs,
              "sampling_rate": pipe.feature_extractor.sampling_rate}

    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={
                "task": task}, return_timestamps=True)["text"]

    return html_embed_str, text


demo = gr.Blocks()

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources=["upload"], type="filepath", label="Audio file"),
    ],
    outputs="text",
    title="Whisper Large V3 Turbo Shqip: Transcribe Audio",
    description=("This fine-tuned Whisper model provides reliable transcription for Albanian audio, whether from a microphone or an uploaded file. " 
                 "Key details about this project:"
                 "\n\n- Fine-tuned on 200 hours of carefully curated Albanian audio data. "
                 "\n- This is the third training run, reflecting continuous improvements as the dataset evolves. "
                 f"\n- Hosted on Hugging Face. Repository: [{model_id}](https://huggingface.co/{model_id}). "
                ),
    allow_flagging="never",
)

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources=["microphone"], type="filepath"),
    ],
    outputs="text",
    title="Whisper Large V3 Turbo Shqip: Transcribe Audio",
    description=("This fine-tuned Whisper model provides reliable transcription for Albanian audio, whether from a microphone or an uploaded file. " 
                 "Key details about this project:"
                 "\n\n- Fine-tuned on 200 hours of carefully curated Albanian audio data. "
                 "\n- This is the third training run, reflecting continuous improvements as the dataset evolves. "
                 f"\n- Hosted on Hugging Face. Repository: [{model_id}](https://huggingface.co/{model_id}). "
                ),
    allow_flagging="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.Textbox(
            lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
    ],
    outputs=["html", "text"],
    title="Whisper Large V3 Turbo Shqip: Transcribe Audio",
    description=("This fine-tuned Whisper model provides reliable transcription for Albanian audio, whether from a microphone or an uploaded file. " 
                 "Key details about this project:"
                 "\n\n- Fine-tuned on 200 hours of carefully curated Albanian audio data. "
                 "\n- This is the third training run, reflecting continuous improvements as the dataset evolves. "
                 f"\n- Hosted on Hugging Face. Repository: [{model_id}](https://huggingface.co/{model_id}). "
                ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])

demo.launch()