from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from transformers.pipelines.audio_utils import ffmpeg_read
from huggingface_hub import login
import yt_dlp as youtube_dl
import gradio as gr
import tempfile
import spaces
import torch
import time
import os
login(os.environ["HF"], add_to_git_credential=True)
BATCH_SIZE = 16
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "Kushtrim/whisper-large-v3-turbo-shqip"
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, use_safetensors=True).to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor,
max_new_tokens=256, chunk_length_s=28, batch_size=16, torch_dtype=torch_dtype, device=device,
token=os.environ["HF"])
@spaces.GPU
def transcribe(inputs, task):
if inputs is None:
raise gr.Error(
"No audio file submitted! Please upload or record an audio file before submitting your request.")
text = pipe(inputs, generate_kwargs={
'num_beams': 5, "task": task, 'language': 'sq'}, return_timestamps=True)["text"]
return text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'
'
" "
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime(
"%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime(
"%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename,
"format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def yt_transcribe(yt_url, task, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs,
"sampling_rate": pipe.feature_extractor.sampling_rate}
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={
"task": task}, return_timestamps=True)["text"]
return html_embed_str, text
demo = gr.Blocks()
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources=["upload"], type="filepath", label="Audio file"),
],
outputs="text",
title="Whisper Large V3 Turbo Shqip: Transcribe Audio",
description=("This fine-tuned Whisper model provides reliable transcription for Albanian audio, whether from a microphone or an uploaded file. "
"Key details about this project:"
"\n\n- Fine-tuned on 200 hours of carefully curated Albanian audio data. "
"\n- This is the third training run, reflecting continuous improvements as the dataset evolves. "
f"\n- Hosted on Hugging Face. Repository: [{model_id}](https://huggingface.co/{model_id}). "
),
allow_flagging="never",
)
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources=["microphone"], type="filepath"),
],
outputs="text",
title="Whisper Large V3 Turbo Shqip: Transcribe Audio",
description=("This fine-tuned Whisper model provides reliable transcription for Albanian audio, whether from a microphone or an uploaded file. "
"Key details about this project:"
"\n\n- Fine-tuned on 200 hours of carefully curated Albanian audio data. "
"\n- This is the third training run, reflecting continuous improvements as the dataset evolves. "
f"\n- Hosted on Hugging Face. Repository: [{model_id}](https://huggingface.co/{model_id}). "
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(
lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
],
outputs=["html", "text"],
title="Whisper Large V3 Turbo Shqip: Transcribe Audio",
description=("This fine-tuned Whisper model provides reliable transcription for Albanian audio, whether from a microphone or an uploaded file. "
"Key details about this project:"
"\n\n- Fine-tuned on 200 hours of carefully curated Albanian audio data. "
"\n- This is the third training run, reflecting continuous improvements as the dataset evolves. "
f"\n- Hosted on Hugging Face. Repository: [{model_id}](https://huggingface.co/{model_id}). "
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
demo.launch()