File size: 2,998 Bytes
4997aeb
 
da863bf
4997aeb
1efa91b
4997aeb
8eb3e51
4997aeb
2da6f20
4997aeb
 
2da6f20
4997aeb
2da6f20
 
4997aeb
2da6f20
 
 
4997aeb
 
 
 
 
 
 
8ce3d9b
4997aeb
 
 
 
8ce3d9b
4997aeb
 
9eb3e78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce3d9b
9eb3e78
 
5d2299c
9eb3e78
8ce3d9b
 
 
 
9eb3e78
8ce3d9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eb3e78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import streamlit as st
import os
from streamlit_chat import message

st.config(PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION="python")

# from datasets import load_dataset

# dataset = load_dataset("wikipedia", "20220301.en", split="train[240000:250000]")


# wikidata = []

# for record in dataset:
#     wikidata.append(record["text"])

# wikidata = list(set(wikidata))
# # print("\n".join(wikidata[:5]))
# # print(len(wikidata))

from sentence_transformers import SentenceTransformer
import torch

device = 'cuda' if torch.cuda.is_available() else 'cpu'

if device != 'cuda':
    st.text(f"you are using {device}. This is much slower than using "
    "a CUDA-enabled GPU. If on colab you can chnage this by "
    "clicking Runtime > change runtime type > GPU.")

model = SentenceTransformer("all-MiniLM-L6-v2", device=device)
st.divider()

# Creating a Index(Pinecone Vector Database)
import os
import pinecone

from pinecone import Index, GRPCIndex

PINECONE_API_KEY=os.getenv("PINECONE_API_KEY")
PINECONE_ENV=os.getenv("PINECONE_ENV")
PINECONE_ENVIRONMENT=os.getenv("PINECONE_ENVIRONMENT")

def connect_pinecone():
    pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
    st.code(pinecone)
    st.divider()
    st.text(pinecone.list_indexes())
    st.divider()
    st.text(f"Succesfully connected to the pinecone")
    return pinecone

def get_pinecone_semantic_index(pinecone):
    index_name = "sematic-search"

    # only create if it deosnot exists
    if index_name not in pinecone.list_indexes():
        pinecone.create_index(
            name=index_name,
            description="Semantic search",
            dimension=model.get_sentence_embedding_dimension(),
            metric="cosine",
        )
    # now connect to index
    index = pinecone.GRPCIndex(index_name)
    st.text(f"Succesfully connected to the pinecone")
    return index

def chat_actions():
    
    pinecone = connect_pinecone()
    index = get_pinecone_semantic_index(pinecone)

    st.session_state["chat_history"].append(
        {"role": "user", "content": st.session_state["chat_input"]},
    )

    response = model.encode(st.session_state["chat_input"])
    st.session_state["chat_history"].append(
        {
            "role": "assistant",
            "content": response.text,
        },  # This can be replaced with your chat response logic
    )


if "chat_history" not in st.session_state:
    st.session_state["chat_history"] = []


st.chat_input("Enter your message", on_submit=chat_actions, key="chat_input")

for i in st.session_state["chat_history"]:
    with st.chat_message(name=i["role"]):
        st.write(i["content"])

### Creating a Index(Pinecone Vector Database)
# %%writefile .env
PINECONE_API_KEY=os.getenv("PINECONE_API_KEY")
PINECONE_ENV=os.getenv("PINECONE_ENV")
PINECONE_ENVIRONMENT=os.getenv("PINECONE_ENVIRONMENT")

import os
import pinecone

from pinecone import Index, GRPCIndex
pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
st.text(pinecone)