Spaces:
Runtime error
Runtime error
import streamlit as st | |
import os | |
from streamlit_chat import message | |
import numpy as np | |
import pandas as pd | |
from io import StringIO | |
import PyPDF2 | |
from tqdm.auto import tqdm | |
import math | |
from transformers import pipeline | |
from langchain.prompts import ChatPromptTemplate | |
import re | |
# import json | |
# st.config(PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION="python") | |
# from datasets import load_dataset | |
# dataset = load_dataset("wikipedia", "20220301.en", split="train[240000:250000]") | |
# wikidata = [] | |
# for record in dataset: | |
# wikidata.append(record["text"]) | |
# wikidata = list(set(wikidata)) | |
# # print("\n".join(wikidata[:5])) | |
# # print(len(wikidata)) | |
from sentence_transformers import SentenceTransformer | |
import torch | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
if device != 'cuda': | |
st.markdown(f"Note: Using {device}. Expected slow responses compare to CUDA-enabled GPU. Please be patient thanks") | |
model = SentenceTransformer("all-MiniLM-L6-v2", device=device) | |
st.divider() | |
# Creating a Index(Pinecone Vector Database) | |
import os | |
# import pinecone | |
from pinecone.grpc import PineconeGRPC | |
PINECONE_API_KEY=os.getenv("PINECONE_API_KEY") | |
PINECONE_ENV=os.getenv("PINECONE_ENV") | |
PINECONE_ENVIRONMENT=os.getenv("PINECONE_ENVIRONMENT") | |
# pc = PineconeGRPC( api_key=os.environ.get("PINECONE_API_KEY") ) # Now do stuff if 'my_index' not in pc.list_indexes().names(): pc.create_index( name='my_index', dimension=1536, metric='euclidean', spec=ServerlessSpec( cloud='aws', region='us-west-2' ) ) | |
def connect_pinecone(): | |
pinecone = PineconeGRPC(api_key=PINECONE_API_KEY, environment=PINECONE_ENV) | |
# st.code(pinecone) | |
# st.divider() | |
# st.text(pinecone.list_indexes().names()) | |
# st.divider() | |
# st.text(f"Succesfully connected to the pinecone") | |
return pinecone | |
def get_pinecone_semantic_index(pinecone): | |
index_name = "sematic-search-index" | |
# only create if it deosnot exists | |
if index_name not in pinecone.list_indexes().names(): | |
pinecone.create_index( | |
name=index_name, | |
description="Semantic search", | |
dimension=model.get_sentence_embedding_dimension(), | |
metric="cosine", | |
spec=ServerlessSpec( cloud='aws', region='us-east-1' ) | |
) | |
# now connect to index | |
index = pinecone.Index(index_name) | |
# st.text(f"Succesfully connected to the pinecone index") | |
return index | |
def promt_engineer(text, query): | |
summary_prompt_template = """ | |
write a concise summary of the following text delimited by triple backquotes. | |
return your response in bullet points which convers the key points of the text. | |
```{text}``` | |
BULLET POINT SUMMARY: | |
""" | |
# Load the summarization pipeline with the specified model | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
# Generate the prompt | |
prompt = summary_prompt_template.format(text=text) | |
# Generate the summary | |
summary = summarizer(prompt, max_length=1024, min_length=50)[0]["summary_text"] | |
with st.sidebar: | |
st.divider() | |
st.markdown("*:red[Text Summary Generation]* from above Top 5 **:green[similarity search results]**.") | |
st.write(summary) | |
st.divider() | |
GENERATION_PROMPT_TEMPLATE = """ | |
Instructions: | |
------------------------------------------------------------------------------------------------------------------------------- | |
Answer the question only based on the below context: | |
- You're a Research AI expert in the explaining and reading the research papers. | |
- Questions with out-of-context replay with The question is out of context. | |
- Always try to provide Keep it simple answers in nice format without incomplete sentence. | |
- Give the answer atleast 5 seperate lines addition to the title info. | |
- Only If question is relevent to context provide Doc Title: <title> Paragraph: <Paragraph> Page No: <pagenumber> | |
------------------------------------------------------------------------------------------------------------------------------- | |
{context} | |
------------------------------------------------------------------------------------------------------------------------------- | |
Answer the question based on the above context: {question} | |
""" | |
prompt_template = ChatPromptTemplate.from_template(GENERATION_PROMPT_TEMPLATE) | |
prompt = prompt_template.format(context=text, question=query) | |
response_text = "" | |
result = "" | |
try: | |
llm = HuggingFaceHub( | |
repo_id="meta-llama/Meta-Llama-3-8B-Instruct", model_kwargs={"temperature": 0.1, "max_new_tokens": 256, "task":"text-generation"} | |
) | |
response_text = llm.invoke(prompt) | |
escaped_query = re.escape(query) | |
result = re.split(f'Answer the question based on the above context: {escaped_query}\n',response_text)[-1] | |
st.error(f"Error invoke: {e}") | |
except Exception as e: | |
st.error(f"Error invoke: {e}") | |
return summary, result | |
def chat_actions(): | |
pinecone = connect_pinecone() | |
index = get_pinecone_semantic_index(pinecone) | |
st.session_state["chat_history"].append( | |
{"role": "user", "content": st.session_state["chat_input"]}, | |
) | |
query = st.session_state["chat_input"] | |
query_embedding = model.encode(query) | |
# create the query vector | |
query_vector = query_embedding.tolist() | |
# now query vector database | |
result = index.query(query_vector, top_k=5, include_metadata=True) # result is a list of tuples | |
# Create a list of lists | |
data = [] | |
consolidated_text = "" | |
i = 0 | |
for res in result['matches']: | |
i = i + 1 | |
data.append([f"{i}⭐", res['score'], res['metadata']['text']]) | |
consolidated_text += res['metadata']['text'] | |
# Create a DataFrame from the list of lists | |
resdf = pd.DataFrame(data, columns=['TopRank', 'Score', 'Text']) | |
with st.sidebar: | |
st.markdown("*:red[semantic search results]* with **:green[Retrieval Augmented Generation]** ***(RAG)***.") | |
st.dataframe(resdf) | |
bytesize = consolidated_text.encode("utf-8") | |
p = math.pow(1024, 2) | |
mbsize = round(len(bytesize) / p, 2) | |
st.write(f"Text lenth of {len(consolidated_text)} characters with {mbsize}MB size") | |
summary, response = promt_engineer(consolidated_text[:1024], query) | |
for res in result['matches']: | |
st.session_state["chat_history"].append( | |
{ | |
"role": "assistant", | |
"content": f"{response}", | |
}, # This can be replaced with your chat response logic | |
) | |
break; | |
if "chat_history" not in st.session_state: | |
st.session_state["chat_history"] = [] | |
st.chat_input("show me the contents of ML paper published on xxx with article no. xx?", on_submit=chat_actions, key="chat_input") | |
for i in st.session_state["chat_history"]: | |
with st.chat_message(name=i["role"]): | |
st.write(i["content"]) | |
def print_out(pages): | |
for i in range(len(pages)): | |
text = pages[i].extract_text().strip() | |
st.write(f"Page {i} : {text}") | |
def combine_text(pages): | |
concatenates_text = "" | |
for page in tqdm(pages): | |
text = page.extract_text().strip() | |
concatenates_text += text | |
bytesize = concatenates_text.encode("utf-8") | |
p = math.pow(1024, 2) | |
mbsize = round(len(bytesize) / p, 2) | |
st.write(f"There are {len(concatenates_text)} characters in the pdf with {mbsize}MB size") | |
return concatenates_text | |
def split_into_chunks(text, chunk_size): | |
chunks = [] | |
for i in range(0, len(text), chunk_size): | |
chunks.append(text[i:i + chunk_size]) | |
return chunks | |
def create_embeddings(): | |
# Get the uploaded file | |
inputtext = "" | |
with st.sidebar: | |
uploaded_files = st.session_state["uploaded_files"] | |
for uploaded_file in uploaded_files: | |
# Read the contents of the file | |
reader = PyPDF2.PdfReader(uploaded_file) | |
pages = reader.pages | |
print_out(pages) | |
inputtext = combine_text(pages) | |
# connect to pinecone index | |
pinecone = connect_pinecone() | |
index = get_pinecone_semantic_index(pinecone) | |
# The maximum metadata size per vector is 40KB ~ 40000Bytes ~ each text character is 1 to 2 bytes. so rougly given chunk size of 10000 to 40000 | |
chunk_size = 10000 | |
batch_size = 2 | |
chunks = split_into_chunks(inputtext, chunk_size) | |
for i in tqdm(range(0, len(chunks), batch_size)): | |
# find end of batch | |
end = min(i + batch_size, len(chunks)) | |
# create ids batch | |
ids = [str(i) for i in range(i, end)] | |
# create metadata batch | |
metadata = [{"text": text} for text in chunks[i:end]] | |
# create embeddings | |
xc = model.encode(chunks[i:end]) | |
# create records list for upsert | |
records = zip(ids, xc, metadata) | |
# upsert records | |
index.upsert(vectors=records) | |
with st.sidebar: | |
st.write("created vector embeddings!") | |
# check no of records in the index | |
st.write(f"{index.describe_index_stats()}") | |
# Display the contents of the file | |
# st.write(file_contents) | |
with st.sidebar: | |
st.markdown(""" | |
***:red[Follow this steps]*** | |
- upload pdf file to create embeddings using model on your own docs | |
- wait see success message on embeddings creation | |
- It Takes couple of mins after upload the pdf | |
- Now Chat with your documents with help of this RAG system | |
- It Generate Promted reponses on the upload pdf | |
- Provides summarized results and QA's using GPT models | |
- This system already trained on some wikipedia datasets too | |
""") | |
uploaded_files = st.file_uploader('Choose your .pdf file', type="pdf", accept_multiple_files=True, key="uploaded_files", on_change=create_embeddings) | |
# for uploaded_file in uploaded_files: | |
# To read file as bytes: | |
# bytes_data = uploaded_file.getvalue() | |
# st.write(bytes_data) | |
# To convert to a string based IO: | |
# stringio = StringIO(uploaded_file.getvalue().decode("utf-8")) | |
# st.write(stringio) | |
# To read file as string: | |
# string_data = stringio.read() | |
# st.write(string_data) | |
# Can be used wherever a "file-like" object is accepted: | |
# dataframe = pd.read_csv(uploaded_file) | |
# st.write(dataframe) | |
# reader = PyPDF2.PdfReader(uploaded_file) | |
# pages = reader.pages | |
# print_out(pages) | |
# combine_text(pages) | |
# promt_engineer(text) |