chat-with-docs / app.py
Kushwanth Chowday Kandala
update app.py
8ce3d9b unverified
raw
history blame
1.51 kB
import streamlit as st
import os
from streamlit_chat import message
# from datasets import load_dataset
# dataset = load_dataset("wikipedia", "20220301.en", split="train[240000:250000]")
# wikidata = []
# for record in dataset:
# wikidata.append(record["text"])
# wikidata = list(set(wikidata))
# # print("\n".join(wikidata[:5]))
# # print(len(wikidata))
from sentence_transformers import SentenceTransformer
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device != 'cuda':
st.text(f"you are using {device}. This is much slower than using "
"a CUDA-enabled GPU. If on colab you can chnage this by "
"clicking Runtime > change runtime type > GPU.")
model = SentenceTransformer("all-MiniLM-L6-v2", device=device)
st.divider()
# Creating a Index(Pinecone Vector Database)
def chat_actions():
st.session_state["chat_history"].append(
{"role": "user", "content": st.session_state["chat_input"]},
)
response = model.generate_content(st.session_state["chat_input"])
st.session_state["chat_history"].append(
{
"role": "assistant",
"content": response.text,
}, # This can be replaced with your chat response logic
)
if "chat_history" not in st.session_state:
st.session_state["chat_history"] = []
st.chat_input("Enter your message", on_submit=chat_actions, key="chat_input")
for i in st.session_state["chat_history"]:
with st.chat_message(name=i["role"]):
st.write(i["content"])