chat-with-docs / app.py
Kushwanth Chowday Kandala
TypeError: Value must be iterable index.upsert(vectors=records)
a78496d unverified
raw
history blame
8.68 kB
import streamlit as st
import os
from streamlit_chat import message
import numpy as np
import pandas as pd
from io import StringIO
import PyPDF2
from tqdm.auto import tqdm
import math
from transformers import pipeline
# import json
# st.config(PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION="python")
# from datasets import load_dataset
# dataset = load_dataset("wikipedia", "20220301.en", split="train[240000:250000]")
# wikidata = []
# for record in dataset:
# wikidata.append(record["text"])
# wikidata = list(set(wikidata))
# # print("\n".join(wikidata[:5]))
# # print(len(wikidata))
from sentence_transformers import SentenceTransformer
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device != 'cuda':
st.markdown(f"you are using {device}. This is much slower than using "
"a CUDA-enabled GPU. If on colab you can change this by "
"clicking Runtime > change runtime type > GPU.")
model = SentenceTransformer("all-MiniLM-L6-v2", device=device)
st.divider()
# Creating a Index(Pinecone Vector Database)
import os
# import pinecone
from pinecone.grpc import PineconeGRPC
PINECONE_API_KEY=os.getenv("PINECONE_API_KEY")
PINECONE_ENV=os.getenv("PINECONE_ENV")
PINECONE_ENVIRONMENT=os.getenv("PINECONE_ENVIRONMENT")
# pc = PineconeGRPC( api_key=os.environ.get("PINECONE_API_KEY") ) # Now do stuff if 'my_index' not in pc.list_indexes().names(): pc.create_index( name='my_index', dimension=1536, metric='euclidean', spec=ServerlessSpec( cloud='aws', region='us-west-2' ) )
def connect_pinecone():
pinecone = PineconeGRPC(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
# st.code(pinecone)
# st.divider()
# st.text(pinecone.list_indexes().names())
# st.divider()
# st.text(f"Succesfully connected to the pinecone")
return pinecone
def get_pinecone_semantic_index(pinecone):
index_name = "sematic-search"
# only create if it deosnot exists
if index_name not in pinecone.list_indexes().names():
pinecone.create_index(
name=index_name,
description="Semantic search",
dimension=model.get_sentence_embedding_dimension(),
metric="cosine",
spec=ServerlessSpec( cloud='gcp', region='us-central1' )
)
# now connect to index
index = pinecone.Index(index_name)
# st.text(f"Succesfully connected to the pinecone index")
return index
def promt_engineer(text):
prompt_template = """
write a concise summary of the following text delimited by triple backquotes.
return your response in bullet points which convers the key points of the text.
```{text}```
BULLET POINT SUMMARY:
"""
# Load the summarization pipeline with the specified model
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Generate the prompt
prompt = prompt_template.format(text=text)
# Generate the summary
summary = summarizer(prompt, max_length=1024, min_length=50)[0]["summary_text"]
with st.sidebar:
st.divider()
st.markdown("*:red[Text Summary Generation]* from above Top 5 **:green[similarity search results]**.")
st.write(summary)
st.divider()
def chat_actions():
pinecone = connect_pinecone()
index = get_pinecone_semantic_index(pinecone)
st.session_state["chat_history"].append(
{"role": "user", "content": st.session_state["chat_input"]},
)
query_embedding = model.encode(st.session_state["chat_input"])
# create the query vector
query_vector = query_embedding.tolist()
# now query vector database
result = index.query(query_vector, top_k=5, include_metadata=True) # result is a list of tuples
# Create a list of lists
data = []
consolidated_text = ""
i = 0
for res in result['matches']:
i = i + 1
data.append([f"{i}⭐", res['score'], res['metadata']['text']])
consolidated_text += res['metadata']['text']
# Create a DataFrame from the list of lists
resdf = pd.DataFrame(data, columns=['TopRank', 'Score', 'Text'])
with st.sidebar:
st.markdown("*:red[semantic search results]* with **:green[Retrieval Augmented Generation]** ***(RAG)***.")
st.dataframe(resdf)
bytesize = consolidated_text.encode("utf-8")
p = math.pow(1024, 2)
mbsize = round(len(bytesize) / p, 2)
st.write(f"Text lenth of {len(consolidated_text)} characters with {mbsize}MB size")
promt_engineer(consolidated_text[:1024])
for res in result['matches']:
st.session_state["chat_history"].append(
{
"role": "assistant",
"content": f"{res['metadata']['text']}",
}, # This can be replaced with your chat response logic
)
break;
if "chat_history" not in st.session_state:
st.session_state["chat_history"] = []
st.chat_input("show me the contents of ML paper published on xxx with article no. xx?", on_submit=chat_actions, key="chat_input")
for i in st.session_state["chat_history"]:
with st.chat_message(name=i["role"]):
st.write(i["content"])
def print_out(pages):
for i in range(len(pages)):
text = pages[i].extract_text().strip()
st.write(f"Page {i} : {text}")
def combine_text(pages):
concatenates_text = ""
for page in tqdm(pages):
text = page.extract_text().strip()
concatenates_text += text
bytesize = concatenates_text.encode("utf-8")
p = math.pow(1024, 2)
mbsize = round(len(bytesize) / p, 2)
st.write(f"There are {len(concatenates_text)} characters in the pdf with {mbsize}MB size")
return concatenates_text
def split_into_chunks(text, chunk_size):
chunks = []
for i in range(0, len(text), chunk_size):
chunks.append(text[i:i + chunk_size])
return chunks
def create_embeddings():
# Get the uploaded file
inputtext = ""
with st.sidebar:
uploaded_files = st.session_state["uploaded_files"]
for uploaded_file in uploaded_files:
# Read the contents of the file
reader = PyPDF2.PdfReader(uploaded_file)
pages = reader.pages
print_out(pages)
inputtext = combine_text(pages)
# connect to pinecone index
pinecone = connect_pinecone()
index = get_pinecone_semantic_index(pinecone)
# The maximum metadata size per vector is 40KB ~ 40000Bytes ~ each text character is 1 to 2 bytes. so rougly given chunk size of 10000 to 40000
chunk_size = 10000
batch_size = 2
chunks = split_into_chunks(inputtext, batch_size)
for i in tqdm(range(0, len(chunks), batch_size)):
# find end of batch
end = min(i + batch_size, len(chunks))
# create ids batch
ids = [str(i) for i in range(i, end)]
# create metadata batch
metadata = [{"text": text} for text in chunks[i:end]]
# create embeddings
xc = model.encode(chunks[i:end])
# create records list for upsert
records = zip(ids, xc, metadata)
# upsert records
index.upsert(vectors=records)
with st.sidebar:
st.write("created vector embeddings!")
# check no of records in the index
st.write(f"{index.describe_index_stats()}")
# Display the contents of the file
# st.write(file_contents)
with st.sidebar:
st.markdown("""
***:red[Follow this steps]***
- upload pdf file to create embeddings using model on your own docs
- wait see success message on embeddings creation
- It Takes couple of mins after upload the pdf
- Now Chat with your documents with help of this RAG system
- It Generate Promted reponses on the upload pdf
- Provides summarized results and QA's using GPT models
""")
uploaded_files = st.file_uploader('Choose your .pdf file', type="pdf", accept_multiple_files=True, key="uploaded_files", on_change=create_embeddings)
# for uploaded_file in uploaded_files:
# To read file as bytes:
# bytes_data = uploaded_file.getvalue()
# st.write(bytes_data)
# To convert to a string based IO:
# stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
# st.write(stringio)
# To read file as string:
# string_data = stringio.read()
# st.write(string_data)
# Can be used wherever a "file-like" object is accepted:
# dataframe = pd.read_csv(uploaded_file)
# st.write(dataframe)
# reader = PyPDF2.PdfReader(uploaded_file)
# pages = reader.pages
# print_out(pages)
# combine_text(pages)
# promt_engineer(text)