import streamlit as st import os from streamlit_chat import message # st.config(PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION="python") # from datasets import load_dataset # dataset = load_dataset("wikipedia", "20220301.en", split="train[240000:250000]") # wikidata = [] # for record in dataset: # wikidata.append(record["text"]) # wikidata = list(set(wikidata)) # # print("\n".join(wikidata[:5])) # # print(len(wikidata)) from sentence_transformers import SentenceTransformer import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' if device != 'cuda': st.text(f"you are using {device}. This is much slower than using " "a CUDA-enabled GPU. If on colab you can chnage this by " "clicking Runtime > change runtime type > GPU.") model = SentenceTransformer("all-MiniLM-L6-v2", device=device) st.divider() # Creating a Index(Pinecone Vector Database) import os import pinecone from pinecone.grpc import PineconeGRPC PINECONE_API_KEY=os.getenv("PINECONE_API_KEY") PINECONE_ENV=os.getenv("PINECONE_ENV") PINECONE_ENVIRONMENT=os.getenv("PINECONE_ENVIRONMENT") pc = Pinecone( api_key=os.environ.get("PINECONE_API_KEY") ) # Now do stuff if 'my_index' not in pc.list_indexes().names(): pc.create_index( name='my_index', dimension=1536, metric='euclidean', spec=ServerlessSpec( cloud='aws', region='us-west-2' ) ) def connect_pinecone(): pinecone = Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV) st.code(pinecone) st.divider() st.text(pinecone.list_indexes().names()) st.divider() st.text(f"Succesfully connected to the pinecone") return pinecone def get_pinecone_semantic_index(pinecone): index_name = "sematic-search" # only create if it deosnot exists if index_name not in pinecone.list_indexes().names(): pinecone.create_index( name=index_name, description="Semantic search", dimension=model.get_sentence_embedding_dimension(), metric="cosine", spec=ServerlessSpec( cloud='gcp', region='us-central1' ) ) # now connect to index index = PineconeGRPC(index_name) st.text(f"Succesfully connected to the pinecone") return index def chat_actions(): pinecone = connect_pinecone() index = get_pinecone_semantic_index(pinecone) st.session_state["chat_history"].append( {"role": "user", "content": st.session_state["chat_input"]}, ) response = model.encode(st.session_state["chat_input"]) st.session_state["chat_history"].append( { "role": "assistant", "content": response.text, }, # This can be replaced with your chat response logic ) if "chat_history" not in st.session_state: st.session_state["chat_history"] = [] st.chat_input("Enter your message", on_submit=chat_actions, key="chat_input") for i in st.session_state["chat_history"]: with st.chat_message(name=i["role"]): st.write(i["content"]) ### Creating a Index(Pinecone Vector Database) # %%writefile .env # PINECONE_API_KEY=os.getenv("PINECONE_API_KEY") # PINECONE_ENV=os.getenv("PINECONE_ENV") # PINECONE_ENVIRONMENT=os.getenv("PINECONE_ENVIRONMENT") # import os # import pinecone # from pinecone import Index, GRPCIndex # pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENV) # st.text(pinecone)