Spaces:
Sleeping
Sleeping
KushwanthK
commited on
fix faiss_index error
Browse files- app.py +5 -4
- requirements.txt +1 -2
app.py
CHANGED
@@ -22,6 +22,7 @@ from sentence_transformers import SentenceTransformer
|
|
22 |
import torch
|
23 |
from langchain_community.llms.ollama import Ollama
|
24 |
from langchain.prompts import ChatPromptTemplate
|
|
|
25 |
|
26 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
27 |
|
@@ -143,10 +144,10 @@ def get_faiss_semantic_index():
|
|
143 |
|
144 |
# Load embeddings from the pickle file
|
145 |
with open(file_path, "rb") as f:
|
146 |
-
|
147 |
|
148 |
print("Embeddings loaded successfully.")
|
149 |
-
return
|
150 |
|
151 |
# def promt_engineer(text):
|
152 |
PROMPT_TEMPLATE = """
|
@@ -184,7 +185,7 @@ Answer the question based on the above context: {question}
|
|
184 |
|
185 |
def chat_actions():
|
186 |
|
187 |
-
|
188 |
|
189 |
st.session_state["chat_history"].append(
|
190 |
{"role": "user", "content": st.session_state["chat_input"]},
|
@@ -192,7 +193,7 @@ def chat_actions():
|
|
192 |
|
193 |
# query_embedding = model.encode(st.session_state["chat_input"])
|
194 |
query = st.session_state["chat_input"]
|
195 |
-
docs =
|
196 |
for doc in docs:
|
197 |
print("\n")
|
198 |
print(str(doc.metadata["page"]+1) + ":", doc.page_content)
|
|
|
22 |
import torch
|
23 |
from langchain_community.llms.ollama import Ollama
|
24 |
from langchain.prompts import ChatPromptTemplate
|
25 |
+
from langchain_community.vectorstores import FAISS
|
26 |
|
27 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
28 |
|
|
|
144 |
|
145 |
# Load embeddings from the pickle file
|
146 |
with open(file_path, "rb") as f:
|
147 |
+
faiss_index = pickle.load(f)
|
148 |
|
149 |
print("Embeddings loaded successfully.")
|
150 |
+
return faiss_index
|
151 |
|
152 |
# def promt_engineer(text):
|
153 |
PROMPT_TEMPLATE = """
|
|
|
185 |
|
186 |
def chat_actions():
|
187 |
|
188 |
+
faiss_index = get_faiss_semantic_index()
|
189 |
|
190 |
st.session_state["chat_history"].append(
|
191 |
{"role": "user", "content": st.session_state["chat_input"]},
|
|
|
193 |
|
194 |
# query_embedding = model.encode(st.session_state["chat_input"])
|
195 |
query = st.session_state["chat_input"]
|
196 |
+
docs = faiss_index.similarity_search(query, k=2)
|
197 |
for doc in docs:
|
198 |
print("\n")
|
199 |
print(str(doc.metadata["page"]+1) + ":", doc.page_content)
|
requirements.txt
CHANGED
@@ -12,5 +12,4 @@ openai
|
|
12 |
PyMuPDF # instead of fitz
|
13 |
nltk
|
14 |
langchain_community
|
15 |
-
langchain
|
16 |
-
faiss
|
|
|
12 |
PyMuPDF # instead of fitz
|
13 |
nltk
|
14 |
langchain_community
|
15 |
+
langchain
|
|