KushwanthK commited on
Commit
c68a8b8
·
verified ·
1 Parent(s): 255742e

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -2
app.py CHANGED
@@ -52,6 +52,54 @@ if "faq" not in st.session_state:
52
 
53
  st.divider()
54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  def highlight_pdf(file_path, text_to_highlight, page_numbers):
56
  # Create a temporary file to save the modified PDF
57
  # temp_pdf_path = "temp_highlighted_pdf.pdf"
@@ -150,8 +198,8 @@ def get_faiss_semantic_index():
150
  except Exception as e:
151
  st.error(f"Error loading embeddings: {e}")
152
  return None
153
- faiss_index = get_faiss_semantic_index()
154
- print(faiss_index)
155
 
156
  # def promt_engineer(text):
157
  PROMPT_TEMPLATE = """
 
52
 
53
  st.divider()
54
 
55
+ # def upload_file():
56
+ # uploaded_file = st.file_uploader("Upload a file")
57
+ # if uploaded_file is not None:
58
+ # return uploaded_file.read()
59
+
60
+ def create_pickle_file(filepath):
61
+
62
+ from langchain_community.document_loaders import PyMuPDFLoader
63
+ loader = PyMuPDFLoader(filepath)
64
+ pages = loader.load()
65
+
66
+ # Load a pre-trained sentence transformer model
67
+ model_name = "sentence-transformers/all-mpnet-base-v2"
68
+ model_kwargs = {'device': 'cpu'}
69
+ encode_kwargs = {'normalize_embeddings': False}
70
+
71
+ # Create a HuggingFaceEmbeddings object
72
+ from langchain_community.embeddings import HuggingFaceEmbeddings
73
+ embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs)
74
+
75
+ from pathlib import Path
76
+
77
+ path = Path(filepath)
78
+
79
+ filename = path.name
80
+
81
+ print(filename)
82
+
83
+ from datetime import datetime
84
+
85
+ # Get current date and time
86
+ now = datetime.now()
87
+
88
+ # Format as string with milliseconds
89
+ formatted_datetime = now.strftime("%Y-%m-%d_%H:%M:%S.%f")[:-3]
90
+
91
+ print(formatted_datetime)
92
+
93
+ # Create FAISS index with the HuggingFace embeddings
94
+ faiss_index = FAISS.from_documents(pages, embeddings)
95
+ with open(f"./{filename}_{formatted_datetime}.pkl", "wb") as f:
96
+ pickle.dump(faiss_index, f)
97
+
98
+
99
+ uploaded_file = st.file_uploader("Upload a file", type=["pdf"])
100
+ if uploaded_file is not None:
101
+ create_pickle_file(uploaded_file)
102
+
103
  def highlight_pdf(file_path, text_to_highlight, page_numbers):
104
  # Create a temporary file to save the modified PDF
105
  # temp_pdf_path = "temp_highlighted_pdf.pdf"
 
198
  except Exception as e:
199
  st.error(f"Error loading embeddings: {e}")
200
  return None
201
+ # faiss_index = get_faiss_semantic_index()
202
+ # print(faiss_index)
203
 
204
  # def promt_engineer(text):
205
  PROMPT_TEMPLATE = """