import streamlit as st from transformers import AutoTokenizer, FalconModel import torch device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b") model = FalconModel.from_pretrained("Rocketknight1/falcon-rw-1b") model.to(device) def generate_text(prompt, max_new_tokens=100, do_sample=True): model_inputs = tokenizer([prompt], return_tensors="pt").to(device) generated_ids = model.generate(**model_inputs, max_new_tokens=max_new_tokens, do_sample=do_sample) return tokenizer.batch_decode(generated_ids, skip_special_tokens=True) st.title("KviGPT - Hugging Face Chat") user_input = st.text_input("You:", value="My favourite condiment is ") if st.button("Send"): prompt = user_input model_response = generate_text(prompt)[0] st.write("KviGPT:", model_response)