import streamlit as st from huggingface_hub import InferenceClient import os # Set up the model and client model_name = "01-ai/Yi-1.5-34B-Chat" client = InferenceClient(model_name, token=os.getenv("API_KEY")) chat_history = [] # Streamlit app layout st.title("Chat with Yi-1.5-34B") st.write("Type 'quit' to exit the chat.") # Chat area chat_container = st.empty() # User input area user_input = st.text_input("Enter your message:", key="input") # Send message button send_button = st.button("Send", on_click=lambda: send_message(user_input)) # Function to handle sending messages def send_message(message): if message: global chat_history chat_history.append({"role": "user", "content": message}) # Clear the input field st.session_state.input = "" # Generate response response = client.chat_completion( messages=chat_history, max_tokens=500, stream=True, ) # Display response in the chat area with chat_container.container(): for message in response: st.write(message.choices[0].delta.content, unsafe_allow_html=True) # Add response to chat history chat_history.append({"role": "assistant", "content": response[-1].choices[0].message.content}) # Display chat history with chat_container.container(): for message in chat_history: if message["role"] == "user": st.write(f"**You:** {message['content']}") else: st.write(f"**Yi:** {message['content']}")