import os | |
#from langchain import PromptTemplate, HuggingFaceHub, LLMChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationChain | |
import langchain.globals | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import streamlit as st | |
def load_model(): | |
tokenizer = AutoTokenizer.from_pretrained("KvrParaskevi/Hotel-Assistant-Attempt4-Llama-2-7b") | |
model = AutoModelForCausalLM.from_pretrained("KvrParaskevi/Hotel-Assistant-Attempt4-Llama-2-7b") | |
return tokenizer,model | |
#Write function to connect to Bedrock | |
# def demo_chatbot(): | |
# # client = boto3.client('bedrock-runtime') | |
# template = """Question: {question} | |
# Answer: Let's think step by step.""" | |
# prompt = PromptTemplate(template=template, input_variables=["question"]) | |
# llm=HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature":1e-10}) | |
# question = "When was Google founded?" | |
# print(llm_chain.run(question)) | |
# return demo_llm | |
#test out the code with the Predicgt method | |
#return demo_llm.predict(input) | |
# = demo_chatbot('What is the temperature in Nuremberg today?') | |
#print(response) | |
def demo_miny_memory(model): | |
# llm_data = get_Model(hugging_face_key) | |
memory = ConversationBufferMemory(llm = model,max_token_limit = 512) | |
return memory | |
def demo_chain(input_text, memory,model): | |
# llm_data = get_Model(hugging_face_key) | |
llm_conversation = ConversationChain(llm=model,memory=memory,verbose=langchain.globals.get_verbose()) | |
chat_reply = llm_conversation.predict(input=input_text) | |
return chat_reply |