import os import streamlit as st import chatbot as demo_chat from transformers import AutoModelForCausalLM, AutoTokenizer st.title("Hi, I am Chatbot Philio :mermaid:") st.write("I am your hotel booking assistant for today.") tokenizer, model = demo_chat.load_model() scrollable_div_style = """ """ def render_chat_history(chat_history): #renders chat history for message in chat_history: if(message["role"]!= "system"): with st.chat_message(message["role"]): st.markdown(message["content"]) def generate_response(chat_history): tokenized_chat = tokenizer.apply_chat_template(chat_history, tokenize=True, add_generation_prompt=True, return_tensors="pt") outputs = model.generate(tokenized_chat, do_sample =True, max_new_tokens=50, temperature = 0.3, top_p = 0.85) answer = tokenizer.decode(outputs[0][tokenized_chat.shape[1]:],skip_special_tokens=True) final_answer = answer.split("<")[0] return final_answer #Application #Langchain memory in session cache if 'memory' not in st.session_state: st.session_state.memory = demo_chat.demo_miny_memory(model) system_content = "You are a friendly chatbot who always helps the user book a hotel room based on his/her needs.Based on the current social norms you wait for the user's response to your proposals." #Check if chat history exists in this session if 'chat_history' not in st.session_state: st.session_state.chat_history = [ { "role": "system", "content": system_content, }, {"role": "assistant", "content": "Hello, how can I help you today?"}, ] #Initialize chat history if 'model' not in st.session_state: st.session_state.model = model st.markdown('