File size: 6,683 Bytes
9c1188f
6af00ba
4213f50
e3894fb
 
7d94414
 
 
 
 
7e3fb58
d9e0520
 
 
 
 
 
 
 
 
6af00ba
 
d9e0520
 
0ebff8f
ee032a8
d9e0520
0ebff8f
6af00ba
 
 
 
 
 
 
 
 
 
 
0ebff8f
 
6af00ba
 
0ebff8f
6af00ba
 
 
0ebff8f
d9e0520
6af00ba
 
 
 
b46f5ab
0ebff8f
6af00ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43b1821
 
 
 
 
 
 
 
 
 
 
 
e8f7917
 
078637c
43b1821
 
 
 
 
 
 
35ed179
078637c
 
7d94414
 
 
 
 
 
 
 
 
 
 
35ed179
 
078637c
 
 
 
35ed179
74d7e67
078637c
 
43b1821
7d94414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c1188f
bbb68cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import gradio as gr
import psutil
import subprocess
import time

def generate_response_by_api():
    FinalOutput = ""
    #return FinalOutput
    pass

def generate_response(user_message): #generate_response_token_by_token
    cmd = [
        "/app/llama.cpp/main",  # Path to the executable
        "-m", "/app/llama.cpp/models/stablelm-2-zephyr-1_6b-Q4_0.gguf",
        "-p", user_message,
        "-n", "400",
        "-e"
    ]

    process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1)
    process_monitor = psutil.Process(process.pid)


    start_time = time.time()
    monitor_start_time = time.time()
    alltokens = ""
    token_buffer = ''
    tokencount = 0
    try:
        while True:
            # Read one character at a time
            char = process.stdout.read(1)
            if char == '' and process.poll() is not None:
                break
            if char != '':
                token_buffer += char
                if char == ' ' or char == '\n':  # Token delimiters
                    elapsed_time = time.time() - start_time  # Calculate elapsed time
                    alltokens += token_buffer
                    tokencount += 1
                    yield f"{alltokens} \n\n [Inference time: {elapsed_time:.2f} seconds | Tokens: { tokencount }]"
                    token_buffer = ''  # Reset token buffer
            # Log resource usage every minute
            if time.time() - monitor_start_time > 60:
                cpu_usage = process_monitor.cpu_percent()
                memory_usage = process_monitor.memory_info().rss  # in bytes 
                print(f"Subprocess CPU Usage: {cpu_usage}%, Memory Usage: {memory_usage / 1024 ** 2} MB")
                monitor_start_time = time.time()  # Reset the timer
    
        # Yield the last token if there is any
        if token_buffer:
            elapsed_time = time.time() - start_time  # Calculate elapsed time
            alltokens += token_buffer
            yield f"{alltokens} \n\n [Inference time: {elapsed_time:.2f} seconds | Average Tokens per second: { round(tokencount / elapsed_time, 2) }]"

    finally:
        try:
            # Wait for the process to complete, with a timeout
            process.wait(timeout=60)  # Timeout in seconds
        except subprocess.TimeoutExpired:
            print("Process didn't complete within the timeout. Killing it.")
            process.kill()
            process.wait()  # Ensure proper cleanup
        # Wait for the subprocess to finish if it hasn't already
        process.stdout.close()
        process.stderr.close()

        # Check for any errors
        if process.returncode != 0:
            error_message = process.stderr.read()
            print(f"Error: {error_message}")

def custom_generate_response(cust_user_message, prompt_index):
    """
    Generates a custom response based on the user message and the selected prompt,
    including a custom ending specific to the prompt.

    Parameters:
    - cust_user_message: The message input from the user.
    - prompt_index: The index of the custom prompt to use.
    """
    prompt, ending = CustomPrompts[prompt_index]  # Unpack the prompt and its ending
    cust_user_message = f"{prompt}\n\n{cust_user_message}\n\n{ending}"
    yield from generate_response(cust_user_message)

CustomPrompts = [
    ("Write a Class Diagram based on the following text:", "Class Diagram:"),
    ("Write a Pydot code based on the following text:", "Pydot Code:"),
    ("Describe what a standard happy scene in any movie would be planned in great detail, based on the following text:", "Scene Details"),
    ("Explain a teardown of the product mentioned in the following text:", "Teardown Details:"),
    ("Explain the manufacturing of the product mentioned in the following text:", "Manufacturing Details:"),
    ("Explain the marketing considerations of the product mentioned in the following text:", "Considerations:"),
    ("Explain the target users considerations of the product mentioned in the following text:", "Target Users Considerations:"),
    ("My problem to solve is", "- please make 10 sub problems have to solve from this:"),
]

BusinessPrompts = [
    ("Write an outline for a business plan for " , "")
    ("Write an outline for a Executive Summary for " , "Executive Summary:")
    ("Write an outline for a Company Description for " , "Company Description:")
    ("Write an outline for a Market Analysis for " , "Market Analysis:")
    ("Write an outline for a Marketing and Sales Strategy for " , "Marketing and Sales Strategy:")
    ("Write an outline for a Product Development for " , "Product Development:")
    ("Write an outline for a Operations and Management for " , "Operations and Management:")
    ("Write an outline for a Financial Projections for " , "Financial Projections:")
]

with gr.Blocks() as iface:
    gr.HTML("Stabilityai's demo - https://huggingface.co/spaces/stabilityai/stablelm-2-1_6b-zephyr")
    gr.Interface(
        fn=generate_response,
        inputs=gr.Textbox(lines=2, placeholder="Type your message here..."),
        outputs="text",
        title="Stable LM 2 Zephyr (1.6b) LLama.cpp Interface Test (Inconsistent Performance - 100 tokens in 50 secs (when this HF space is updated) or 800+ secs(HF space open for long))",
        description="No Prompt template used yet (Essentially autocomplete). No Message History for now - Enter your message and get a response.",
        flagging_dir="/usr/src/app/flagged",
    )

    gr.HTML("Any standard way of thinking / Repetitive idea / rule of thumb / advice can be turned into a button (In a timeline?)")

    with gr.Accordion("Random Ideas"):
        with gr.Group():
            gr.HTML("Test for wrapping generator (Instead of buttons tabs and dropdowns?)")
            MainOutput = gr.TextArea(placeholder='Output will show here')
            CustomButtonInput = gr.TextArea(lines=1, placeholder='Prompt goes here')
            
            # Dynamically create buttons and assign actions
            for index, (prompt, _) in enumerate(CustomPrompts):
                button = gr.Button(prompt)
                button.click(custom_generate_response, inputs=[CustomButtonInput, gr.State(index)], outputs=MainOutput)

    with gr.Accordion("General Product based"):
        with gr.Group():
            # Dynamically create buttons and assign actions
            for index, (prompt, _) in enumerate(CustomPrompts):
                button = gr.Button(prompt)
                button.click(custom_generate_response, inputs=[CustomButtonInput, gr.State(index)], outputs=MainOutput)

iface.queue().launch(server_name="0.0.0.0", share=True)