File size: 8,661 Bytes
2c4ef8c
 
 
8c74afb
196b595
4cc9c49
196b595
 
 
 
 
 
 
 
 
 
 
 
 
 
41df859
196b595
2c4ef8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aafd85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c4ef8c
 
 
 
 
0aafd85
2c4ef8c
 
 
 
 
 
 
 
 
 
0aafd85
 
2c4ef8c
 
 
 
 
 
 
e9e3195
 
 
 
 
 
 
 
 
 
 
 
 
0aafd85
 
 
e9e3195
0aafd85
2c4ef8c
0aafd85
 
 
 
 
 
 
 
e9e3195
0aafd85
e9e3195
 
 
 
 
2c4ef8c
4cc9c49
 
 
 
 
 
 
 
 
e5579ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c4ef8c
4cc9c49
 
 
e5579ec
 
 
 
 
 
 
 
 
 
 
 
0aafd85
4cc9c49
0aafd85
 
2c4ef8c
0aafd85
 
0747efa
0aafd85
4cc9c49
0aafd85
83fdea9
20df333
0aafd85
20df333
 
2c4ef8c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from googletrans import Translator
import spacy
import gradio as gr
import nltk
from nltk.corpus import wordnet
import wikipedia

nltk.download('maxent_ne_chunker') #Chunker
nltk.download('stopwords') #Stop Words List (Mainly Roman Languages)
nltk.download('words') #200 000+ Alphabetical order list
nltk.download('punkt') #Tokenizer
nltk.download('verbnet') #For Description of Verbs
nltk.download('omw')
nltk.download('omw-1.4') #Multilingual Wordnet
nltk.download('wordnet') #For Definitions, Antonyms and Synonyms
nltk.download('shakespeare')
nltk.download('dolch') #Sight words
nltk.download('names') #People Names NER
nltk.download('gazetteers') #Location NER
nltk.download('opinion_lexicon') #Sentiment words
nltk.download('averaged_perceptron_tagger') #Parts of Speech Tagging


spacy.cli.download("en_core_web_sm")

nlp = spacy.load('en_core_web_sm')
translator = Translator()

def Sentencechunker(sentence):
    Sentchunks = sentence.split(" ")
    chunks = []
    for i in range(len(Sentchunks)):
        chunks.append(" ".join(Sentchunks[:i+1]))
    return " | ".join(chunks)

def ReverseSentenceChunker(sentence):
    reversed_sentence = " ".join(reversed(sentence.split()))
    chunks = Sentencechunker(reversed_sentence)
    return chunks

def three_words_chunk(sentence):
    words = sentence.split()
    chunks = [words[i:i+3] for i in range(len(words)-2)]
    chunks = [" ".join(chunk) for chunk in chunks]
    return " | ".join(chunks)

def keep_nouns_verbs(sentence):
    doc = nlp(sentence)
    nouns_verbs = []
    for token in doc:
        if token.pos_ in ['NOUN','VERB','PUNCT']:
            nouns_verbs.append(token.text)
    return " ".join(nouns_verbs)

def unique_word_count(text="", state=None):
    if state is None:
        state = {}
    words = text.split()
    word_counts = state
    for word in words:
        if word in word_counts:
            word_counts[word] += 1
        else:
            word_counts[word] = 1
    sorted_word_counts = sorted(word_counts.items(), key=lambda x: x[1], reverse=True)
    return sorted_word_counts,    

def Wordchunker(word):
    chunks = []
    for i in range(len(word)):
        chunks.append(word[:i+1])
    return chunks

def BatchWordChunk(sentence):
  words = sentence.split(" ")
  FinalOutput = ""
  Currentchunks = ""
  ChunksasString = ""
  for word in words:
    ChunksasString = ""
    Currentchunks = Wordchunker(word)
    for chunk in Currentchunks:
      ChunksasString += chunk + " "
    FinalOutput += "\n" + ChunksasString
  return FinalOutput

# Translate from English to French

langdest = gr.Dropdown(choices=["af", "de", "es", "ko", "ja", "zh-cn"], label="Choose Language", value="de")

ChunkModeDrop = gr.Dropdown(choices=["Chunks", "Reverse", "Three Word Chunks", "Spelling Chunks"], label="Choose Chunk Type", value="Chunks")

def FrontRevSentChunk (Chunkmode, Translate, Text, langdest):
  FinalOutput = ""
  TransFinalOutput = ""
  if Chunkmode=="Chunks": 
    FinalOutput += Sentencechunker(Text)
  if Chunkmode=="Reverse":
    FinalOutput += ReverseSentenceChunker(Text)
  if Chunkmode=="Three Word Chunks": 
    FinalOutput += three_words_chunk(Text) 
  if Chunkmode=="Spelling Chunks":
    FinalOutput += BatchWordChunk(Text)
  
  if Translate: 
    TransFinalOutput = FinalOutput
    translated = translator.translate(TransFinalOutput, dest=langdest)
    FinalOutput += "\n" + translated.text
  return FinalOutput

# Define a function to filter out non-verb, noun, or adjective words
def filter_words(words):
    # Use NLTK to tag each word with its part of speech
    tagged_words = nltk.pos_tag(words)

    # Define a set of parts of speech to keep (verbs, nouns, adjectives)
    keep_pos = {'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'NN', 'NNS', 'NNP', 'NNPS', 'JJ', 'JJR', 'JJS'}

    # Filter the list to only include words with the desired parts of speech
    filtered_words = [word for word, pos in tagged_words if pos in keep_pos]

    return filtered_words

def SepHypandSynExpansion(text):
  # Tokenize the text
  tokens = nltk.word_tokenize(text)
  NoHits = ""
  FinalOutput = ""

  # Find synonyms and hypernyms of each word in the text
  for token in tokens:
      synonyms = []
      hypernyms = []
      for synset in wordnet.synsets(token):
          synonyms += synset.lemma_names()
          hypernyms += [hypernym.name() for hypernym in synset.hypernyms()]
      if not synonyms and not hypernyms:
          NoHits += f"{token} | "
      else:
          FinalOutput += "\n" f"{token}: hypernyms={hypernyms}, synonyms={synonyms} \n"
  NoHits = set(NoHits.split(" | "))  
  NoHits = filter_words(NoHits)
  NoHits = "Words to pay special attention to: \n" + str(NoHits)
  return NoHits, FinalOutput


def WikiSearch(term):
    termtoks = term.split(" ")

    for item in termtoks:
      # Search for the term on Wikipedia and get the first result
      result = wikipedia.search(item, results=20)
    return result

import re

def find_string_positions(s, string):
    positions = []
    start = 0
    while True:
        position = s.find(string, start)
        if position == -1:
            break
        positions.append(position)
        start = position + len(string)
    return positions

def splittext(string, split_positions):
  split_strings = []
  prepos = 0
  for pos in split_positions:
      pos -= 12
      split_strings.append((string[prepos:pos])) #, string[pos:]))
      prepos = pos
  
  FinalOutput = ""
  stoutput = ""
  linenumber = 1
  print(linenumber)
  for item in split_strings[1:]:
    stoutput = item[0:29] + "\n" + item[30:]
    stspaces = find_string_positions(stoutput, " ")
    FinalOutput += str(linenumber) + "\n" + stoutput[:stspaces[-2]] + "\n"
    FinalOutput += "\n"
    linenumber += 1
  return FinalOutput[2:]    

with gr.Blocks() as lliface:
  with gr.Tab("Welcome "):
    gr.HTML("<h1> Spaces Test - Still Undercontruction </h1> <p> You only learn when you convert things you dont know to known --> Normally Repetition is the only reliable method for everybody </p>  <p> Knowledge is a Language </p> <p>LingQ is good option for per word state management</p> <p> Arrows app json creator for easy knowledge graphing and spacy POS graph? </p> <p> https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles<br>, https://huggingface.co/spaces/vumichien/whisper-speaker-diarization<br>  Maybe duplicate these, private them and then load into spaces? --> Whisper space for youtube, Clip Interrogator, load here and all my random functions esp. text to HTML </p>")
  with gr.Tab("LingQ Addons ideas"):
    gr.HTML("Extra functions needed - Persitent Sentence translation, UNWFWO, POS tagging and Word Count per user of words in their account")
    with gr.Row():
        with gradio.Column(scale=1):
            gr.TextArea(title="Paste Roman")
        with gradio.Column(scale=1):
            gr.TextArea(title="Paste Word 4 Word")
        with gradio.Column(scale=1):
            gr.TextArea(title="Paste Full Meaning")
        with gradio.Column(scale=1):
            gr.TextArea(title="Macaronic Text")   
    with gr.Row():
        gr.Interface()
  with gr.Tab("Transcribe - RASMUS Whisper"):
    gr.HTML("""<p>If this tab doesnt work use the link below ⬇️</p> <a href="https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles">https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles</a>""")
    gr.Interface.load("spaces/RASMUS/Whisper-youtube-crosslingual-subtitles", title="Subtitles")
  with gr.Tab("Chunks"):
    gr.Interface(fn=FrontRevSentChunk, inputs=[ChunkModeDrop, "checkbox", "text", langdest], outputs="text")
    gr.Interface(fn=keep_nouns_verbs, inputs=["text"], outputs="text", title="Noun and Verbs only (Plus punctuation)")
  with gr.Tab("Unique words, Hypernyms and synonyms"):
    gr.Interface(fn=unique_word_count, inputs="text", outputs="text", title="Wordcounter")
    gr.Interface(fn=SepHypandSynExpansion, inputs="text", outputs=["text", "text"], title="Word suggestions")
    gr.Interface(fn=WikiSearch, inputs="text", outputs="text", title="Unique word suggestions(wiki articles)")  
  with gr.Tab("Timing Practice"):
    gr.HTML("""<iframe height="1200" style="width: 100%;" scrolling="no" title="Memorisation Aid" src="https://codepen.io/kwabs22/embed/preview/GRXKQgj?default-tab=result&editable=true" frameborder="no" loading="lazy" allowtransparency="true" allowfullscreen="true">
  See the Pen <a href="https://codepen.io/kwabs22/pen/GRXKQgj">
  Memorisation Aid</a> by kwabs22 (<a href="https://codepen.io/kwabs22">@kwabs22</a>)
  on <a href="https://codepen.io">CodePen</a>.
</iframe>""")

lliface.launch()