Kolors-Controlnet / basicsr /models /stylegan2_model.py
lixiang46
fix basicsr bug
a64b7d4
import cv2
import math
import numpy as np
import random
import torch
from collections import OrderedDict
from os import path as osp
from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.losses.gan_loss import g_path_regularize, r1_penalty
from basicsr.utils import imwrite, tensor2img
from basicsr.utils.registry import MODEL_REGISTRY
from .base_model import BaseModel
@MODEL_REGISTRY.register()
class StyleGAN2Model(BaseModel):
"""StyleGAN2 model."""
def __init__(self, opt):
super(StyleGAN2Model, self).__init__(opt)
# define network net_g
self.net_g = build_network(opt['network_g'])
self.net_g = self.model_to_device(self.net_g)
self.print_network(self.net_g)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_g', None)
if load_path is not None:
param_key = self.opt['path'].get('param_key_g', 'params')
self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key)
# latent dimension: self.num_style_feat
self.num_style_feat = opt['network_g']['num_style_feat']
num_val_samples = self.opt['val'].get('num_val_samples', 16)
self.fixed_sample = torch.randn(num_val_samples, self.num_style_feat, device=self.device)
if self.is_train:
self.init_training_settings()
def init_training_settings(self):
train_opt = self.opt['train']
# define network net_d
self.net_d = build_network(self.opt['network_d'])
self.net_d = self.model_to_device(self.net_d)
self.print_network(self.net_d)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_d', None)
if load_path is not None:
param_key = self.opt['path'].get('param_key_d', 'params')
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True), param_key)
# define network net_g with Exponential Moving Average (EMA)
# net_g_ema only used for testing on one GPU and saving, do not need to
# wrap with DistributedDataParallel
self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_g', None)
if load_path is not None:
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
else:
self.model_ema(0) # copy net_g weight
self.net_g.train()
self.net_d.train()
self.net_g_ema.eval()
# define losses
# gan loss (wgan)
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
# regularization weights
self.r1_reg_weight = train_opt['r1_reg_weight'] # for discriminator
self.path_reg_weight = train_opt['path_reg_weight'] # for generator
self.net_g_reg_every = train_opt['net_g_reg_every']
self.net_d_reg_every = train_opt['net_d_reg_every']
self.mixing_prob = train_opt['mixing_prob']
self.mean_path_length = 0
# set up optimizers and schedulers
self.setup_optimizers()
self.setup_schedulers()
def setup_optimizers(self):
train_opt = self.opt['train']
# optimizer g
net_g_reg_ratio = self.net_g_reg_every / (self.net_g_reg_every + 1)
if self.opt['network_g']['type'] == 'StyleGAN2GeneratorC':
normal_params = []
style_mlp_params = []
modulation_conv_params = []
for name, param in self.net_g.named_parameters():
if 'modulation' in name:
normal_params.append(param)
elif 'style_mlp' in name:
style_mlp_params.append(param)
elif 'modulated_conv' in name:
modulation_conv_params.append(param)
else:
normal_params.append(param)
optim_params_g = [
{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_g']['lr']
},
{
'params': style_mlp_params,
'lr': train_opt['optim_g']['lr'] * 0.01
},
{
'params': modulation_conv_params,
'lr': train_opt['optim_g']['lr'] / 3
}
]
else:
normal_params = []
for name, param in self.net_g.named_parameters():
normal_params.append(param)
optim_params_g = [{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_g']['lr']
}]
optim_type = train_opt['optim_g'].pop('type')
lr = train_opt['optim_g']['lr'] * net_g_reg_ratio
betas = (0**net_g_reg_ratio, 0.99**net_g_reg_ratio)
self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, lr, betas=betas)
self.optimizers.append(self.optimizer_g)
# optimizer d
net_d_reg_ratio = self.net_d_reg_every / (self.net_d_reg_every + 1)
if self.opt['network_d']['type'] == 'StyleGAN2DiscriminatorC':
normal_params = []
linear_params = []
for name, param in self.net_d.named_parameters():
if 'final_linear' in name:
linear_params.append(param)
else:
normal_params.append(param)
optim_params_d = [
{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_d']['lr']
},
{
'params': linear_params,
'lr': train_opt['optim_d']['lr'] * (1 / math.sqrt(512))
}
]
else:
normal_params = []
for name, param in self.net_d.named_parameters():
normal_params.append(param)
optim_params_d = [{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_d']['lr']
}]
optim_type = train_opt['optim_d'].pop('type')
lr = train_opt['optim_d']['lr'] * net_d_reg_ratio
betas = (0**net_d_reg_ratio, 0.99**net_d_reg_ratio)
self.optimizer_d = self.get_optimizer(optim_type, optim_params_d, lr, betas=betas)
self.optimizers.append(self.optimizer_d)
def feed_data(self, data):
self.real_img = data['gt'].to(self.device)
def make_noise(self, batch, num_noise):
if num_noise == 1:
noises = torch.randn(batch, self.num_style_feat, device=self.device)
else:
noises = torch.randn(num_noise, batch, self.num_style_feat, device=self.device).unbind(0)
return noises
def mixing_noise(self, batch, prob):
if random.random() < prob:
return self.make_noise(batch, 2)
else:
return [self.make_noise(batch, 1)]
def optimize_parameters(self, current_iter):
loss_dict = OrderedDict()
# optimize net_d
for p in self.net_d.parameters():
p.requires_grad = True
self.optimizer_d.zero_grad()
batch = self.real_img.size(0)
noise = self.mixing_noise(batch, self.mixing_prob)
fake_img, _ = self.net_g(noise)
fake_pred = self.net_d(fake_img.detach())
real_pred = self.net_d(self.real_img)
# wgan loss with softplus (logistic loss) for discriminator
l_d = self.cri_gan(real_pred, True, is_disc=True) + self.cri_gan(fake_pred, False, is_disc=True)
loss_dict['l_d'] = l_d
# In wgan, real_score should be positive and fake_score should be
# negative
loss_dict['real_score'] = real_pred.detach().mean()
loss_dict['fake_score'] = fake_pred.detach().mean()
l_d.backward()
if current_iter % self.net_d_reg_every == 0:
self.real_img.requires_grad = True
real_pred = self.net_d(self.real_img)
l_d_r1 = r1_penalty(real_pred, self.real_img)
l_d_r1 = (self.r1_reg_weight / 2 * l_d_r1 * self.net_d_reg_every + 0 * real_pred[0])
# TODO: why do we need to add 0 * real_pred, otherwise, a runtime
# error will arise: RuntimeError: Expected to have finished
# reduction in the prior iteration before starting a new one.
# This error indicates that your module has parameters that were
# not used in producing loss.
loss_dict['l_d_r1'] = l_d_r1.detach().mean()
l_d_r1.backward()
self.optimizer_d.step()
# optimize net_g
for p in self.net_d.parameters():
p.requires_grad = False
self.optimizer_g.zero_grad()
noise = self.mixing_noise(batch, self.mixing_prob)
fake_img, _ = self.net_g(noise)
fake_pred = self.net_d(fake_img)
# wgan loss with softplus (non-saturating loss) for generator
l_g = self.cri_gan(fake_pred, True, is_disc=False)
loss_dict['l_g'] = l_g
l_g.backward()
if current_iter % self.net_g_reg_every == 0:
path_batch_size = max(1, batch // self.opt['train']['path_batch_shrink'])
noise = self.mixing_noise(path_batch_size, self.mixing_prob)
fake_img, latents = self.net_g(noise, return_latents=True)
l_g_path, path_lengths, self.mean_path_length = g_path_regularize(fake_img, latents, self.mean_path_length)
l_g_path = (self.path_reg_weight * self.net_g_reg_every * l_g_path + 0 * fake_img[0, 0, 0, 0])
# TODO: why do we need to add 0 * fake_img[0, 0, 0, 0]
l_g_path.backward()
loss_dict['l_g_path'] = l_g_path.detach().mean()
loss_dict['path_length'] = path_lengths
self.optimizer_g.step()
self.log_dict = self.reduce_loss_dict(loss_dict)
# EMA
self.model_ema(decay=0.5**(32 / (10 * 1000)))
def test(self):
with torch.no_grad():
self.net_g_ema.eval()
self.output, _ = self.net_g_ema([self.fixed_sample])
def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
if self.opt['rank'] == 0:
self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
assert dataloader is None, 'Validation dataloader should be None.'
self.test()
result = tensor2img(self.output, min_max=(-1, 1))
if self.opt['is_train']:
save_img_path = osp.join(self.opt['path']['visualization'], 'train', f'train_{current_iter}.png')
else:
save_img_path = osp.join(self.opt['path']['visualization'], 'test', f'test_{self.opt["name"]}.png')
imwrite(result, save_img_path)
# add sample images to tb_logger
result = (result / 255.).astype(np.float32)
result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
if tb_logger is not None:
tb_logger.add_image('samples', result, global_step=current_iter, dataformats='HWC')
def save(self, epoch, current_iter):
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
self.save_network(self.net_d, 'net_d', current_iter)
self.save_training_state(epoch, current_iter)