Spaces:
Running
on
Zero
Running
on
Zero
# coding: utf-8 | |
""" | |
The entrance of the gradio | |
""" | |
import tyro | |
import gradio as gr | |
import os.path as osp | |
from src.utils.helper import load_description | |
from src.gradio_pipeline import GradioPipeline | |
from src.config.crop_config import CropConfig | |
from src.config.argument_config import ArgumentConfig | |
from src.config.inference_config import InferenceConfig | |
import gdown | |
import os | |
folder_url = f"https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib" | |
gdown.download_folder(url=folder_url, output="pretrained_weights", quiet=False) | |
def partial_fields(target_class, kwargs): | |
return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)}) | |
# set tyro theme | |
tyro.extras.set_accent_color("bright_cyan") | |
args = tyro.cli(ArgumentConfig) | |
# specify configs for inference | |
inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig | |
crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig | |
gradio_pipeline = GradioPipeline( | |
inference_cfg=inference_cfg, | |
crop_cfg=crop_cfg, | |
args=args | |
) | |
# assets | |
title_md = "assets/gradio_title.md" | |
example_portrait_dir = "assets/examples/source" | |
example_video_dir = "assets/examples/driving" | |
data_examples = [ | |
[osp.join(example_portrait_dir, "s9.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True], | |
[osp.join(example_portrait_dir, "s6.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True], | |
[osp.join(example_portrait_dir, "s10.jpg"), osp.join(example_video_dir, "d5.mp4"), True, True, True, True], | |
[osp.join(example_portrait_dir, "s5.jpg"), osp.join(example_video_dir, "d6.mp4"), True, True, True, True], | |
[osp.join(example_portrait_dir, "s7.jpg"), osp.join(example_video_dir, "d7.mp4"), True, True, True, True], | |
] | |
#################### interface logic #################### | |
# Define components first | |
eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eyes-open ratio") | |
lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio") | |
retargeting_input_image = gr.Image(type="numpy") | |
output_image = gr.Image(type="numpy") | |
output_image_paste_back = gr.Image(type="numpy") | |
output_video = gr.Video() | |
output_video_concat = gr.Video() | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.HTML(load_description(title_md)) | |
gr.Markdown(load_description("assets/gradio_description_upload.md")) | |
with gr.Row(): | |
with gr.Accordion(open=True, label="Source Portrait"): | |
image_input = gr.Image(type="filepath") | |
with gr.Accordion(open=True, label="Driving Video"): | |
video_input = gr.Video() | |
gr.Examples( | |
examples=[ | |
[osp.join(example_portrait_dir, "d0.mp4")], | |
[osp.join(example_video_dir, "d5.mp4")], | |
[osp.join(example_video_dir, "d6.mp4")], | |
[osp.join(example_video_dir, "d7.mp4")], | |
], | |
inputs=[video_input], | |
cache_examples=False, | |
) | |
gr.Markdown(load_description("assets/gradio_description_animation.md")) | |
with gr.Row(): | |
with gr.Accordion(open=True, label="Animation Options"): | |
with gr.Row(): | |
flag_relative_input = gr.Checkbox(value=True, label="relative motion") | |
flag_do_crop_input = gr.Checkbox(value=True, label="do crop") | |
flag_remap_input = gr.Checkbox(value=True, label="paste-back") | |
with gr.Row(): | |
with gr.Column(): | |
process_button_animation = gr.Button("🚀 Animate", variant="primary") | |
with gr.Column(): | |
process_button_reset = gr.ClearButton([image_input, video_input, output_video, output_video_concat], value="🧹 Clear") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Accordion(open=True, label="The animated video in the original image space"): | |
output_video.render() | |
with gr.Column(): | |
with gr.Accordion(open=True, label="The animated video"): | |
output_video_concat.render() | |
with gr.Row(): | |
# Examples | |
gr.Markdown("## You could choose the examples below ⬇️") | |
with gr.Row(): | |
gr.Examples( | |
examples=data_examples, | |
inputs=[ | |
image_input, | |
video_input, | |
flag_relative_input, | |
flag_do_crop_input, | |
flag_remap_input | |
], | |
#outputs=[output_image, output_image_paste_back], | |
examples_per_page=5, | |
#cache_examples="lazy", | |
#fn=lambda *args: spaces.GPU()(gradio_pipeline.execute_video)(*args), | |
) | |
gr.Markdown(load_description("assets/gradio_description_retargeting.md")) | |
with gr.Row(): | |
eye_retargeting_slider.render() | |
lip_retargeting_slider.render() | |
with gr.Row(): | |
process_button_retargeting = gr.Button("🚗 Retargeting", variant="primary") | |
process_button_reset_retargeting = gr.ClearButton( | |
[ | |
eye_retargeting_slider, | |
lip_retargeting_slider, | |
retargeting_input_image, | |
output_image, | |
output_image_paste_back | |
], | |
value="🧹 Clear" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Accordion(open=True, label="Retargeting Input"): | |
retargeting_input_image.render() | |
with gr.Column(): | |
with gr.Accordion(open=True, label="Retargeting Result"): | |
output_image.render() | |
with gr.Column(): | |
with gr.Accordion(open=True, label="Paste-back Result"): | |
output_image_paste_back.render() | |
# binding functions for buttons | |
process_button_retargeting.click( | |
fn=gradio_pipeline.execute_image, | |
inputs=[eye_retargeting_slider, lip_retargeting_slider], | |
outputs=[output_image, output_image_paste_back], | |
show_progress=True | |
) | |
process_button_animation.click( | |
fn=lambda *args: spaces.GPU()(gradio_pipeline.execute_video)(*args), | |
inputs=[ | |
image_input, | |
video_input, | |
flag_relative_input, | |
flag_do_crop_input, | |
flag_remap_input | |
], | |
outputs=[output_video, output_video_concat], | |
show_progress=True | |
) | |
image_input.change( | |
fn=gradio_pipeline.prepare_retargeting, | |
inputs=image_input, | |
outputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image] | |
) | |
demo.launch() |