Spaces:
Running
on
Zero
Running
on
Zero
# coding: utf-8 | |
""" | |
Pipeline of LivePortrait | |
""" | |
import torch | |
torch.backends.cudnn.benchmark = True # disable CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR warning | |
import cv2 | |
import numpy as np | |
import pickle | |
import os | |
import os.path as osp | |
from rich.progress import track | |
from .config.argument_config import ArgumentConfig | |
from .config.inference_config import InferenceConfig | |
from .config.crop_config import CropConfig | |
from .utils.cropper import Cropper | |
from .utils.camera import get_rotation_matrix | |
from .utils.video import images2video, concat_frames, get_fps, add_audio_to_video, has_audio_stream | |
from .utils.crop import _transform_img, prepare_paste_back, paste_back | |
from .utils.retargeting_utils import calc_lip_close_ratio | |
from .utils.io import load_image_rgb, load_driving_info, resize_to_limit | |
from .utils.helper import mkdir, basename, dct2cuda, is_video, is_template | |
from .utils.rprint import rlog as log | |
from .live_portrait_wrapper import LivePortraitWrapper | |
def make_abs_path(fn): | |
return osp.join(osp.dirname(osp.realpath(__file__)), fn) | |
class LivePortraitPipeline(object): | |
def __init__(self, inference_cfg: InferenceConfig, crop_cfg: CropConfig): | |
self.live_portrait_wrapper: LivePortraitWrapper = LivePortraitWrapper(cfg=inference_cfg) | |
self.cropper = Cropper(crop_cfg=crop_cfg) | |
def execute(self, args: ArgumentConfig): | |
inference_cfg = self.live_portrait_wrapper.cfg # for convenience | |
######## process source portrait ######## | |
img_rgb = load_image_rgb(args.source_image) | |
img_rgb = resize_to_limit(img_rgb, inference_cfg.ref_max_shape, inference_cfg.ref_shape_n) | |
log(f"Load source image from {args.source_image}") | |
crop_info = self.cropper.crop_single_image(img_rgb) | |
source_lmk = crop_info['lmk_crop'] | |
img_crop, img_crop_256x256 = crop_info['img_crop'], crop_info['img_crop_256x256'] | |
if inference_cfg.flag_do_crop: | |
I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256) | |
else: | |
I_s = self.live_portrait_wrapper.prepare_source(img_rgb) | |
x_s_info = self.live_portrait_wrapper.get_kp_info(I_s) | |
x_c_s = x_s_info['kp'] | |
R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll']) | |
f_s = self.live_portrait_wrapper.extract_feature_3d(I_s) | |
x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info) | |
if inference_cfg.flag_lip_zero: | |
# let lip-open scalar to be 0 at first | |
c_d_lip_before_animation = [0.] | |
combined_lip_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk) | |
if combined_lip_ratio_tensor_before_animation[0][0] < inference_cfg.lip_zero_threshold: | |
inference_cfg.flag_lip_zero = False | |
else: | |
lip_delta_before_animation = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation) | |
############################################ | |
######## process driving info ######## | |
output_fps = 30 # default fps | |
if is_video(args.driving_info): | |
log(f"Load from video file (mp4 mov avi etc...): {args.driving_info}") | |
output_fps = int(get_fps(args.driving_info)) | |
log(f'The FPS of {args.driving_info} is: {output_fps}') | |
# TODO: 这里track一下驱动视频 -> 构建模板 | |
driving_rgb_lst = load_driving_info(args.driving_info) | |
driving_rgb_lst_256 = [cv2.resize(_, (256, 256)) for _ in driving_rgb_lst] | |
I_d_lst = self.live_portrait_wrapper.prepare_driving_videos(driving_rgb_lst_256) | |
n_frames = I_d_lst.shape[0] | |
if inference_cfg.flag_eye_retargeting or inference_cfg.flag_lip_retargeting: | |
driving_lmk_lst = self.cropper.get_retargeting_lmk_info(driving_rgb_lst) | |
input_eye_ratio_lst, input_lip_ratio_lst = self.live_portrait_wrapper.calc_retargeting_ratio(source_lmk, driving_lmk_lst) | |
elif is_template(args.driving_info): | |
log(f"Load from video templates {args.driving_info}") | |
with open(args.driving_info, 'rb') as f: | |
template_lst, driving_lmk_lst = pickle.load(f) | |
n_frames = template_lst[0]['n_frames'] | |
input_eye_ratio_lst, input_lip_ratio_lst = self.live_portrait_wrapper.calc_retargeting_ratio(source_lmk, driving_lmk_lst) | |
else: | |
raise Exception("Unsupported driving types!") | |
######################################### | |
######## prepare for pasteback ######## | |
if inference_cfg.flag_pasteback: | |
mask_ori = prepare_paste_back(inference_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0])) | |
I_p_paste_lst = [] | |
######################################### | |
I_p_lst = [] | |
R_d_0, x_d_0_info = None, None | |
for i in track(range(n_frames), description='Animating...', total=n_frames): | |
if is_video(args.driving_info): | |
# extract kp info by M | |
I_d_i = I_d_lst[i] | |
x_d_i_info = self.live_portrait_wrapper.get_kp_info(I_d_i) | |
R_d_i = get_rotation_matrix(x_d_i_info['pitch'], x_d_i_info['yaw'], x_d_i_info['roll']) | |
else: | |
# from template | |
x_d_i_info = template_lst[i] | |
x_d_i_info = dct2cuda(x_d_i_info, inference_cfg.device_id) | |
R_d_i = x_d_i_info['R_d'] | |
if i == 0: | |
R_d_0 = R_d_i | |
x_d_0_info = x_d_i_info | |
if inference_cfg.flag_relative: | |
R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s | |
delta_new = x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp']) | |
scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale']) | |
t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t']) | |
else: | |
R_new = R_d_i | |
delta_new = x_d_i_info['exp'] | |
scale_new = x_s_info['scale'] | |
t_new = x_d_i_info['t'] | |
t_new[..., 2].fill_(0) # zero tz | |
x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new | |
# Algorithm 1: | |
if not inference_cfg.flag_stitching and not inference_cfg.flag_eye_retargeting and not inference_cfg.flag_lip_retargeting: | |
# without stitching or retargeting | |
if inference_cfg.flag_lip_zero: | |
x_d_i_new += lip_delta_before_animation.reshape(-1, x_s.shape[1], 3) | |
else: | |
pass | |
elif inference_cfg.flag_stitching and not inference_cfg.flag_eye_retargeting and not inference_cfg.flag_lip_retargeting: | |
# with stitching and without retargeting | |
if inference_cfg.flag_lip_zero: | |
x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new) + lip_delta_before_animation.reshape(-1, x_s.shape[1], 3) | |
else: | |
x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new) | |
else: | |
eyes_delta, lip_delta = None, None | |
if inference_cfg.flag_eye_retargeting: | |
c_d_eyes_i = input_eye_ratio_lst[i] | |
combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio(c_d_eyes_i, source_lmk) | |
# ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i) | |
eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s, combined_eye_ratio_tensor) | |
if inference_cfg.flag_lip_retargeting: | |
c_d_lip_i = input_lip_ratio_lst[i] | |
combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_i, source_lmk) | |
# ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i) | |
lip_delta = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor) | |
if inference_cfg.flag_relative: # use x_s | |
x_d_i_new = x_s + \ | |
(eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \ | |
(lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0) | |
else: # use x_d,i | |
x_d_i_new = x_d_i_new + \ | |
(eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \ | |
(lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0) | |
if inference_cfg.flag_stitching: | |
x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new) | |
out = self.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new) | |
I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0] | |
I_p_lst.append(I_p_i) | |
if inference_cfg.flag_pasteback: | |
I_p_i_to_ori_blend = paste_back(I_p_i, crop_info['M_c2o'], img_rgb, mask_ori) | |
I_p_paste_lst.append(I_p_i_to_ori_blend) | |
mkdir(args.output_dir) | |
wfp_concat = None | |
flag_has_audio = has_audio_stream(args.driving_info) | |
if is_video(args.driving_info): | |
frames_concatenated = concat_frames(I_p_lst, driving_rgb_lst, img_crop_256x256) | |
# save (driving frames, source image, drived frames) result | |
wfp_concat = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat.mp4') | |
images2video(frames_concatenated, wfp=wfp_concat, fps=output_fps) | |
if flag_has_audio: | |
# final result with concat | |
wfp_concat_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat_with_audio.mp4') | |
add_audio_to_video(wfp_concat, args.driving_info, wfp_concat_with_audio) | |
os.replace(wfp_concat_with_audio, wfp_concat) | |
log(f"Replace {wfp_concat} with {wfp_concat_with_audio}") | |
# save drived result | |
wfp = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}.mp4') | |
if inference_cfg.flag_pasteback: | |
images2video(I_p_paste_lst, wfp=wfp, fps=output_fps) | |
else: | |
images2video(I_p_lst, wfp=wfp, fps=output_fps) | |
######### build final result ######### | |
if flag_has_audio: | |
wfp_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_with_audio.mp4') | |
add_audio_to_video(wfp, args.driving_info, wfp_with_audio) | |
os.replace(wfp_with_audio, wfp) | |
log(f"Replace {wfp} with {wfp_with_audio}") | |
return wfp, wfp_concat | |